

Année universitaire 2024-2025 BUT GEII

TP OUTILS MATHÉMATIQUES ET LOGICIELS

SEMESTRE 1

Auteur : Florent ARNAL

Adresse électronique : florent.arnal@u-bordeaux.fr

Site: http://flarnal.e-monsite.com

TP 1 : DÉCOUVERTE DE MAPLE

Pour plus de précisions et d'exemples sur certaines fonctions MAPLE, consultez l'aide.

Pour s'entraîner

- 1. Donner une valeur approchée de e. Donner une valeur approchée de π (avec 3 chiffres après la virgule).
- 2. Développer $(\sqrt{5}-1)^2$ et $(x-1)^4$.
- 3. Simplifier $\exp(a) \times \exp(b) + \cos^2(x) + \sin^2(x)$.
- 4. Linéariser $\cos^2 x$ et $\sin^3 x$.
- 5. Calculer, en utilisant le signe \sum , les sommes suivantes :

Calculer, en utilisant le signe
$$A = 2^0 + 2^1 + 2^2 + \dots + 2^9$$

 $B = 3 + 3^2 + \dots + 3^7$
 $C = 1 + q + q^2 + \dots + q^n$
 $D = 1^2 + 2^2 + \dots + n^2$.

$$B = 3 + 3^2 + \dots + 3^7$$

$$C = 1 + q + q^2 + \dots + q^r$$

$$D = 1^2 + 2^2 + \dots + n^2$$
.

- 6. La fonction échelon unité u (Heaviside pour les anglosaxons) est notée Heaviside () avec Maple.
 - (a) Déterminer, à l'aide de Maple, u(-2), u(0) et u(3) puis représenter la fonction de Heaviside.
 - (b) Pour différentes valeurs de a et b (avec a < b), représenter la fonction

$$f_{a,b}: x \mapsto u(x-a) - u(x-b)$$

- (c) Représenter, ci-dessous, la fonction $f_{a,b}$.
- (d) Représenter un signal constant sur [1; 5], d'amplitude 3 et nul ailleurs.
- (e) Représenter la fonction définie par $f(x) = x^2$ sur [0;3] et nulle ailleurs.

7. On considère la fonction f définie par $f(x) = \frac{x^2 + 1}{x - 1} e^{\frac{1}{x}}$.

Déterminer f(-1), f'(x) ainsi que $\int_{2}^{3} f(x) dx$.

8. Déterminer les limites suivantes :
$$\lim_{x\to +\infty} \frac{x-a}{x+a} \quad \text{et} \quad \lim_{x\to 0^-} \mathrm{e}^{\frac{1}{x}}.$$

9. Résoudre les équations et inéquations suivantes :
$$\cos{(3x)} = \frac{\sqrt{2}}{2} \qquad ; \qquad x^2 > 4 \; ; \qquad \left\{ \begin{array}{l} 3x + 4y = 11 \\ 5x - 2y = 1 \end{array} \right. ; \qquad x^3 - 2x + 1 = 0.$$

- 10. Représentations graphiques et Approximations au voisinage de 0 :
 - (a) Déterminer l'approximation affine (DL d'ordre 1) de la fonction sin et tracer les représentations graphiques de sin et $x \mapsto x$ sur [-1; 1].
 - (b) Déterminer l'approximation affine (DL d'ordre 1) de la fonction tan et tracer les représentations graphiques de tan et $x \mapsto x$.
 - (c) Déterminer une approximation par un polynôme de degré 2 (DL d'ordre 2) de la fonction cos et tracer les représentations graphiques de cos et du polynôme trouvé sur $[-\pi; \pi]$.

Pour aller plus loin

- 1. Faire un programme permettant de déterminer la valeur absolue d'un réel.
- 2. Faire un programme permettant de déterminer la somme des n premiers entiers où n est un entier naturel. On pourra s'assurer que le nombre saisi est bien un entier ...

TP 2: Représentations graphiques

Objectif : Identifier et représenter des signaux usuels.

Exercices ne nécessitant pas l'usage d'un logiciel

Exercice 1:

Représenter ci-dessous les fonctions sin et cos sur $[-2\pi; 2\pi]$.

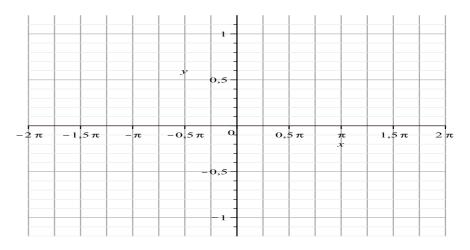


FIGURE 1 – Courbes des fonctions sin et cos.

Exercice 2:

Les courbes ci-dessous représentent les fonctions suivantes :

$$f:t\mapsto \sin(\pi t) \qquad g:t\mapsto 3\sin(t) \qquad h:t\mapsto \sin(2t) \qquad k:t\mapsto 3\sin(2\pi t)$$

Identifier la fonction associée à chacune des courbes ci-dessous.

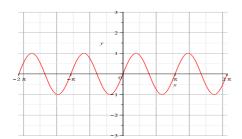


FIGURE 2 – Courbe de \cdots

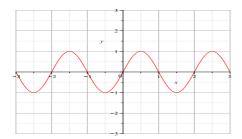


FIGURE 4 – Courbe de \cdots

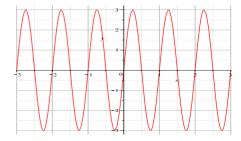


Figure 3 – Courbe de \cdots

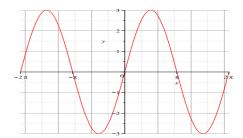


Figure 5 – Courbe de \cdots

Exercice 3:

Sur le graphique ci-dessous, représenter la fonction $f:t\mapsto 2\sin(t)$ et en déduire une expression de la fonction g dont la courbe est tracée sur la figure ci-dessous.

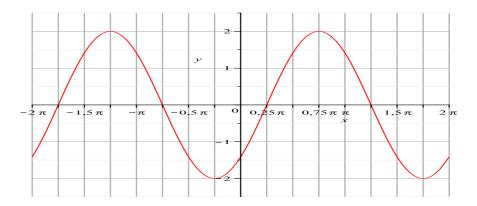


FIGURE 6 – Courbe de $g: t \mapsto \cdots \cdots$

Exercice 4:

On appelle fonction de Heaviside, la fonction u définie sur \mathbb{R} par $u(t) = \begin{cases} 1 & \text{si} \quad t \geq 0 \\ 0 & \text{sinon} \end{cases}$.

Représenter les courbes des fonctions définies par :

Exercices avec Maple

Pour rappel, pour créer une "fenêtre" sur [a;b], il est recommandé d'utiliser la fonction

$$f_{a,b}: x \mapsto \text{Heaviside}(x-a) - \text{Heaviside}(x-b)$$

Exercice 5: Représenter, en utilisant la fonction u = Heaviside, les fonctions définies sur \mathbb{R} par

$$f_{0,3}(x) = \begin{cases} 1 & \text{si} & 0 \le x < 3 \\ 0 & \text{sinon} \end{cases}$$

$$f_1(x) = \begin{cases} -2 & \text{si} & 0 \le x < 3 \\ 0 & \text{sinon} \end{cases}$$

$$f_2(x) = \begin{cases} x^2 & \text{si} & 0 \le x < 3 \\ 0 & \text{sinon} \end{cases}$$

$$f_3(x) = \begin{cases} 0 & \text{si} & x < 1 \\ x^2 & \text{si} & 1 \le x \le 2 \\ 4 & \text{sinon} \end{cases}$$

$$f_4(x) = \begin{cases} 1 & \text{si} & x < 1 \\ x^2 + 2 & \text{si} & 1 \le x < 2 \\ 1 & \text{sinon} \end{cases}$$

$$f_5 \text{ est impaire et } f_5(x) = \begin{cases} x^2 & \text{si} & 0 \le x < 2 \\ 0 & \text{si} & x \ge 2 \end{cases}$$

Exercice 6 : Représenter, à l'aide de Maple, les fonctions dont les courbes représentatives sont données ci-dessous :

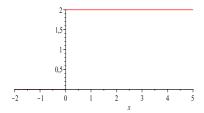


FIGURE 7 – Signal avec échelon

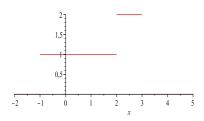


FIGURE 9 – Signal avec échelons

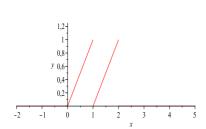
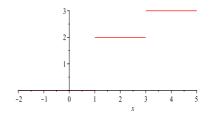


Figure 11 – Signal avec 2 rampes



 ${\tt Figure~8-Signal~avec~\'echelons}$

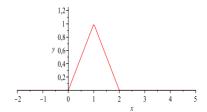


FIGURE 10 – Signal triangulaire

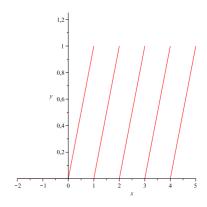
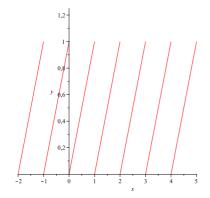
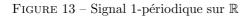


Figure 12 – Signal 1-périodique sur $[0; +\infty[$





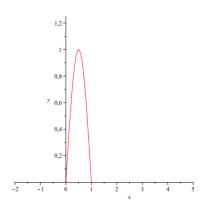


Figure 14 – Signal avec une portion sinusoïdale

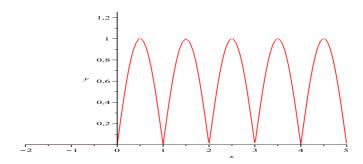


FIGURE 15 – Signal sinusoïdal redressé sur $[0; +\infty[$

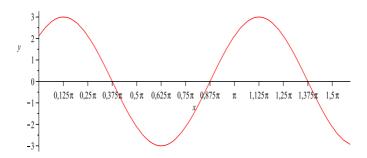


Figure 16 – Signal sinusoïdal sur $[0; +\infty[$

TP 3: UTILISATION D'UN TABLEUR

Objectifs : Utiliser des fonctions de base d'un tableur pour répondre à une problématique statistique ou liée à du calcul intégral.

Exercice 1:

L'objectif de cet exercice est de manipuler un tableur en utilisant des fonction de base.

Pour relancer des simulation, on utilisera la touche F9.

On rappelle que l'écat-type σ d'une série statistique $(x_i; n_i)_{1 \leq i \leq p}$ est tel que :

$$\sigma^{2} = \frac{1}{n} \sum_{i=1}^{p} n_{i} (x_{i} - \bar{x})^{2}$$

Les fonctions à utiliser sont les suivantes (précédées de =):

- SI(Test logique; Valeur si vrai; Valeur si non)
- MOYENNE(), MIN(), MAX(), RACINE()
- ENT() qui correspond à la fonction Partie Entière
- ALEA() qui renvoie un nombre aléatoire appartenant à l'intervalle [0; 1[
- VAR.P(), ECARTYPEP() qui renvoient respectivement la variance et l'écart-type d'une série lorsque l'on a l'intégralité des observations.

Voici les notes obtenues par un étudiant lors du premier semestre :

Notes	Coefficients		
8	1		
10	5		
12	3		
15	4		
16	1		

- 1. Déterminer la moyenne semestrielle et l'écart-type des notes sans tenir compte des coefficients.
- 2. Déterminer la moyenne semestrielle et l'écart-type des notes en tenant compte des coefficients.
- 3. (a) Générer de manière aléatoire (fonction ALEA()) 5 notes entières comprises entre 0 et 20 (affectées des mêmes coefficients que précédemment).
 - (b) Déterminer automatiquement la note minimale et la note maximale.
 - (c) Déterminer la moyenne semestrielle en tenant compte des coefficients.
 - (d) Editer automatiquement la décision du jury suivant les modalités suivantes :
 - Si la moyenne est inférieure à 10, le semestre n'est pas validé.
 - Si la moyenne est supérieure ou égale à 10, le semestre est validé.

Exercice 2 : Calcul approché d'intégrale

Soit f une fonction continue sur l'intervalle [a; b]. On rappelle que

$$S_n(f) = \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a + k \frac{b-a}{n}\right) \underset{n \to +\infty}{\to} \int_a^b f(x) dx$$

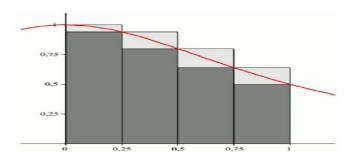


FIGURE 17 – Illustration de la méthode des rectangles

L'objectif de cet exercice est de déterminer une valeur approchée de l'intégrale $I=\int\limits_{1}^{3}f\left(x\right) \,\mathrm{d}x$ où f est la fonction définie par $f\left(x\right) =\frac{1}{1+x^{2}}.$

- 1. Dans cette question, on considère n=4. Déterminer une valeur approchée $S_4(f)$ de l'intégrale I.
- 2. On souhaite pouvoir généraliser, à n entier naturel non nul quelconque, les calculs obtenus dans le cas où n=4.
 - (a) Modifier l'organisation du calcul pour obtenir une valeur approchée de I dans le cas où n=100.
 - (b) Modifier l'organisation du calcul pour obtenir une valeur approchée de I pour une valeur de n quelconque.

Exercice 3: Pour aller plus loin

Cahier de charges:

Créer une interface conviviale sous tableur permettant d'obtenir la courbe sur un intervalle quelconque I=[a,b] et une valeur approchée de l'intégrale $\int_I f(x) dx$ d'une fonction polynomiale quelconque du type

$$\alpha X^2 + \beta X + \gamma$$

TP 4 : SIMULATIONS AVEC UN TABLEUR

Objectifs: Utiliser un tableur pour simuler des phénomènes

Tous ces exercices seront traités avec la fonction ALEA().

Exercice 1:

Dans le cas d'un amplificateur non inverseur à AOP, on rappelle que :

$$V_s = V_e \left(1 + \frac{R_1}{R_2} \right)$$

On considère les valeurs suivantes : $R_1=10~\mathrm{k}\Omega$ à $\pm\,5\%$ et $R_2=1~\mathrm{k}\Omega$ à $\pm\,5\%$. On suppose que : $V_e=1~V$ avec une imprécision $\Delta V_e=\Delta U_{offset}=\pm15~\mathrm{mV}$.

- 1. Simuler 100 valeurs de R_1 , R_2 et V_e en tenant compte des incertitudes de mesures.
- 2. Déterminer les valeurs de V_s associées.
- 3. Donner la valeur cible de V_s ainsi qu'une estimation de l'erreur associée.

Exercice 2:

Les compagnies aériennes pratiquent la sur-réservation (surbooking) c'est-à-dire qu'elles vendent plus de billets qu'il n'y a de places dans l'avion.

Dans cet exemple, on considère une compagnie disposant d'un avion de 200 places et proposant 210 réservations lors d'un trajet très fréquenté (par exemple, Bordeaux-paris à 7h30 en semaine). On fait les hypothèses suivantes :

- Les 210 places sont toujours réservées.
- Chaque personne réservant une place d'avion a 92 % de chance de se présenter à l'embarquement.
- 1. (a) Réaliser une simulation du nombre de personnes se présentant à l'embarquement pour un vol lorsqu'il y a 210 réservations.
 - (b) Réaliser la simulation de 1000 vols dans cette configuration avec 210 réservations.
 - (c) Pour chaque vol, indiquer s'il y a ou non surbooking.
 - (d) À l'aide des simulations réalisées, estimer la probabilité de surbooking pour un vol de ce type avec cette compagnie.
- 2. On considère que le prix du billet est de 250 €.
 - (a) Estimer le gain moyen par vol s'il n'y avait pas de surbooking.
 - (b) Les passagers refoulés à l'entrée de l'avion ont droit à une indemnisation de 125 € par personne. Évaluer le gain moyen de la compagnie par vol en mettant en place le surbooking.

Exercice 3:

Soit un carré de côté 1 et un cercle de rayon 1 (voir graphique ci-dessous).

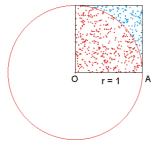


FIGURE 18 – Illustration de la méthode de Monté-carlo

En simulant des points à l'intérieur du carré et en considérant la proportion de ces points appartenant au quart de disque, déterminer une approximation de π .