Université BORDEAUX

Semestre 3	7 Novembre 2024				
TEST 1 DE MATHÉMATIQUES (OML)					
Calculatrice CASIO Collège autorisée. Documents interdits. Durée : 1,5 heu					
NOM, PRENOM, GROUPE:					
Exercice 1: 2 points					
1. Déterminer la transformée de Laplace du signal $f: t \mapsto (t+2)u(t)$.					
2. Déterminer la transformée de Laplace du signal $g: t \mapsto \cos(2t)e^{-t}u(t)$.					

Exercice 2: 4 points

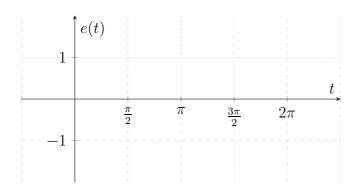
On considère un système dont les signaux d'entrée et de sortie sont respectivement notés e(t) et s(t). On note E(p) et S(p) respectivement les transformées de Laplace de e(t) et s(t) liées par la relation

$$S(p) = \frac{E(p)}{p^2 + 1}$$

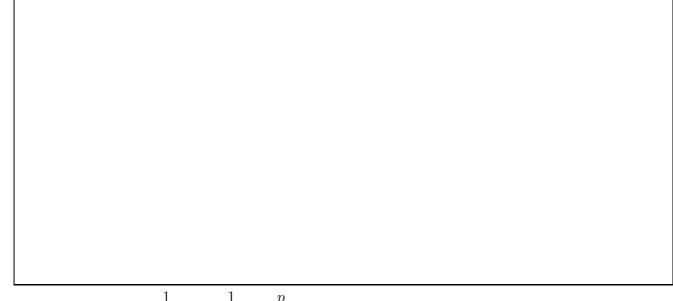
On souhaite étudier la réponse du système sur \mathbb{R}^+ lorsque e(t) est défini par :

$$e(t) = \begin{cases} 1 & \text{si } 0 \le t < \pi \\ -1 & \text{si } \pi \le t < 2\pi \\ 0 & \text{si } t \ge 2\pi \end{cases}$$

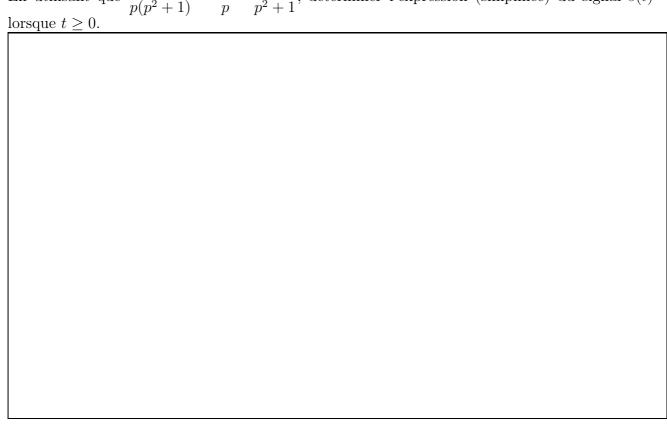
1. Tracer le graphe de e(t).



2. Exprimer e(t) à l'aide de la fonction u et calculer la transformée de Laplace E(p) de e(t).



3. En utilisant que $\frac{1}{p(p^2+1)} = \frac{1}{p} - \frac{p}{p^2+1}$, déterminer l'expression (simplifiée) du signal s(t) lorsque t > 0



Exercice 3: 4 points

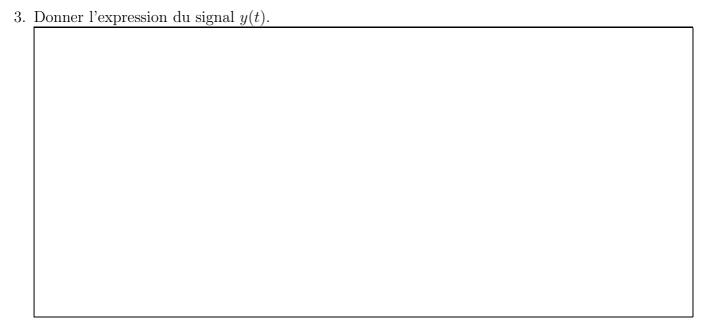
1	On gouhaita	nágoudno	m+	l'équation	différentielle (١
Ι.	On sounaite	resouare,	sur in.	r equation	amerentiene ((\boldsymbol{L}))

$$y''(t) + 4y(t) = e^{-t}$$
 avec $y(0) = 1$ et $y'(0) = 0$.

Déterminer la transformée de Laplace de y(t).

2. Décomposer en éléments simples la fraction rationne	imples la fraction rationn	ples la	s sın	elements	en	poser	Décom	2.
--	----------------------------	---------	-------	----------	----	-------	-------	----

$$Y(p) = \frac{p^2 + p + 1}{(p^2 + 4)(p + 1)}$$



Exercice 4: 10 points

Soit A un réel strictement positif.

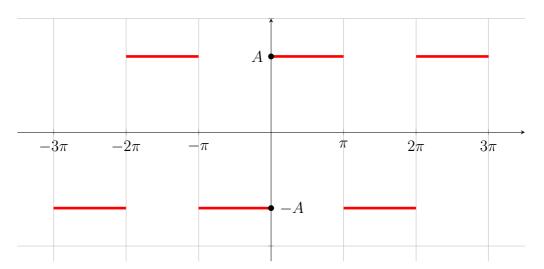
On considère la fonction f définie sur \mathbb{R} , 2π -périodique, telle que

$$f(t) = \begin{cases} A & \text{si } 0 \le t \le \pi \\ -A & \text{si } -\pi < t < 0 \end{cases}$$

On pourra assimiler f à une fonction **impaire**.

On convient de noter la décomposition en série de Fourier

$$S\{f\}(t) = a_0 + \sum_{n=1}^{+\infty} a_n \cos(n\omega t) + b_n \sin(n\omega t)$$



1.	(a) Déterminer la valeur de ω .
	(b) Déterminer la valeur de a_0 , correspondant à la moyenne de f .
	(c) Déterminer la valeur des coefficients a_n du développement en série de Fourier.
2.	Calculer, pour tout $n \geq 1$, b_n en fonction de A et n (uniquement).

3.	(a)	Calculer, en fonction de A , les coefficients b_1 , b_2 , b_3 et b_4 .
	(b)	Déterminer la moyenne quadratique f_{eff}^2 de f .
	()	
	(c)	Déterminer la précision de l'approximation de f par la série de Fourier (tronquée) d'ordre 4.

4.	Déterminer une forme simplifiée des coefficients b_{2k} pour $k \ge 1$ et b_{2k+1} pour $k \ge 0$.
5.	En utilisant l'égalité de Bessel-Parseval, calculer
	$+\infty$
	$\sum_{i=1}^{\infty} \frac{1}{i}$
	$\sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2}$

Autour des transformées de Laplace

Transformées de Laplace et dérivation :

 $\mathcal{L}\left\{ f^{\prime}\right\} \left(p\right)=p\mathcal{L}\left\{ f\right\} \left(p\right)-f\left(0\right).$

 $\mathcal{L}\left\{f''\right\}(p) = p^{2}\mathcal{L}\left\{f\right\}(p) - pf(0) - f'(0).$ Plus généralement, on a : $\mathcal{L}\left\{f^{(n)}\right\}(p) = p^{n}\mathcal{L}\left\{f\right\}(p) - p^{n-1}f(0) - \dots - f^{(n-1)}(0).$ Ainsi : $\mathcal{L}\left\{f^{(3)}\right\}(p) = p^{3}\mathcal{L}\left\{f\right\}(p) - p^{2}f(0) - pf'(0) - f''(0).$

Transformées de Laplace de fonctions :

Expression temporelle	Expression de la transformée de Laplace
$u\left(t\right)$	$\frac{1}{p}$
$\delta\left(t ight)$	1
$\cos(\omega t) u(t)$	$\frac{p}{p^2 + \omega^2}$
$\sin(\omega t) u(t)$	$\frac{\omega}{p^2 + \omega^2}$
$\cosh(\omega t) \ u(t)$	$\frac{p}{p^2 - \omega^2}$
$\sinh\left(\omegat\right)u\left(t\right)$	$\frac{\omega}{p^2 - \omega^2}$
$t^{n}u\left(t ight)$	$\frac{n!}{p^{n+1}}$
$e^{-at} u(t)$	$\frac{1}{p+a}$
t f(t) u(t)	$-\frac{\mathrm{d}}{\mathrm{d}p}[\mathcal{L}\left\{f\right\}](p)$
$f\left(at\right)u\left(t\right)$	$\frac{1}{a}\mathcal{L}\left\{f\right\}\left(\frac{p}{a}\right)$
$e^{-at} f(t) u(t)$	$\mathcal{L}\left\{ f\right\} \left(p+a\right)$
f(t-a)u(t-a)	$e^{-ap}\mathcal{L}\left\{f\right\}\left(p\right)$
f fonction périodique de période T	$\mathcal{L}_0(p) \times \frac{1}{1 - \mathrm{e}^{-pT}}$ où \mathcal{L}_0 est la transformée du motif
f * g (produit de convolution)	$\mathcal{L}\left\{f\right\}\left(p\right)\times\mathcal{L}\left\{g\right\}\left(p\right)$