

Durée: 1,5 heure

Semestre 3 7 Novembre 2024

CORRECTION TEST 1 DE MATHÉMATIQUES (OML)

Calculatrice CASIO Collège autorisée. Documents interdits.

Exercice 1: 2 points

1. Déterminer la transformée de Laplace du signal $f: t \mapsto (t+2)u(t)$.

$$\mathcal{L}\{f\}(p) = \frac{1+2p}{p^2} = \frac{1}{p^2} + \frac{2}{p}$$

2. Déterminer la transformée de Laplace du signal $g: t \mapsto \cos(2t)e^{-t}u(t)$.

$$\mathcal{L}{g}(p) = \mathcal{L}{\cos(2t)u(t)}(p+1) = \frac{p+1}{(p+1)^2 + 4} = \frac{p+1}{p^2 + 2p + 5}$$

Exercice 2:4 points

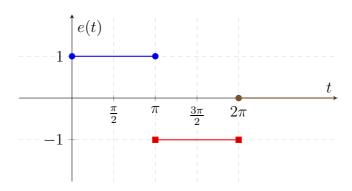
On considère un système dont les signaux d'entrée et de sortie sont respectivement notés e(t) et s(t). On note E(p) et S(p) respectivement les transformées de Laplace de e(t) et s(t) liées par la relation

$$S(p) = \frac{E(p)}{p^2 + 1}$$

On souhaite étudier la réponse du système sur \mathbb{R}^+ lorsque e(t) est défini par :

$$e(t) = \begin{cases} 1 & \text{si } 0 \le t < \pi \\ -1 & \text{si } \pi \le t < 2\pi \\ 0 & \text{si } t \ge 2\pi \end{cases}$$

1. Tracer le graphe de e(t).



2. Exprimer e(t) à l'aide de la fonction u et calculer la transformée de Laplace E(p) de e(t).

$$e(t) = u(t) - u(t - \pi) - (u(t - \pi) - u(t - 2\pi)) = u(t) - 2u(t - \pi) + u(t - 2\pi)$$
$$E(p) = \frac{1 - 2e^{-p\pi} + e^{-2p\pi}}{p} = \frac{(1 - e^{-p\pi})^2}{p}$$

3. En utilisant que $\frac{1}{p(p^2+1)} = \frac{1}{p} - \frac{p}{p^2+1}$, déterminer l'expression (simplifiée) du signal s(t) lorsque $t \ge 0$.

$$S(p) = \frac{E(p)}{p^2 + 1} \text{ donc } S(p) = \frac{1 - 2e^{-p\pi} + e^{-2p\pi}}{p(p^2 + 1)} = (1 - 2e^{-p\pi} + e^{-2p\pi}) \left(\frac{1}{p} - \frac{p}{p^2 + 1}\right).$$
Ainsi
$$s(t) = (1 - \cos(t)) u(t) - 2 (1 - \cos(t - \pi)) u(t - \pi) + (1 - \cos(t - 2\pi)) u(t - 2\pi)$$

$$s(t) = (1 - \cos(t)) u(t) - 2 (1 + \cos(t)) u(t - \pi) + (1 - \cos(t)) u(t - 2\pi)$$
Il en résulte que
$$s(t) = u(t) - 2u(t - \pi) + u(t - 2\pi) - [u(t) + 2u(t - \pi) + u(t - 2\pi)] \cos(t)$$

Exercice 3: 4 points

1. On souhaite résoudre, sur \mathbb{R}^+ , l'équation différentielle (E)

$$y''(t) + 4y(t) = e^{-t}$$
 avec $y(0) = 1$ et $y'(0) = 0$.

Déterminer la transformée de Laplace de y(t).

$$p^{2}\mathcal{L}\{y(t)\}(p) - p + 4\mathcal{L}\{y(t)\}(p) = \frac{1}{p+1} \text{ soit } (p^{2}+4)\mathcal{L}\{y(t)\}(p) = p + \frac{1}{p+1} \text{ Ainsi, on a}$$
$$\mathcal{L}\{y(t)\}(p) = \frac{p^{2}+p+1}{(p^{2}+4)(p+1)}$$

2. Décomposer en éléments simples la fraction rationnelle

$$Y(p) = \frac{p^2 + p + 1}{(p^2 + 4)(p + 1)}$$

$$Y(p)=\frac{p^2+p+1}{(p^2+4)(p+1)}=\frac{a}{p+1}+\frac{bp+c}{p^2+4}$$

$$a=\frac{1}{5}$$
 En considérant $\lim pY(p)$, on a : $a+b=1$ donc $b=\frac{4}{5}$ En considérant $Y(0)$, il vient : $\frac{1}{4}=a+\frac{c}{4}$ soit $c=1-4a=\frac{1}{5}$. Ainsi

$$Y(p) = \frac{1}{5} \left(\frac{1}{p+1} + \frac{4p+1}{p^2+4} \right)$$

3. Donner l'expression du signal y(t).

Il résulte de la question précédente que

$$y(t) = \frac{1}{5} \left(e^{-t} + 4\cos(2t) + \frac{1}{2}\sin(2t) \right) u(t)$$

Exercice 4: 10 points

Soit A un réel strictement positif.

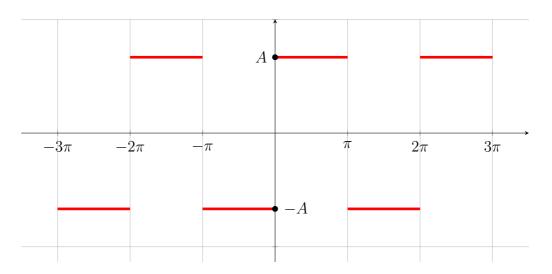
On considère la fonction f définie sur \mathbb{R} , 2π -périodique, telle que

$$f(t) = \begin{cases} A & \text{si } 0 \le t \le \pi \\ -A & \text{si } -\pi < t < 0 \end{cases}$$

On pourra assimiler f à une fonction **impaire**.

On convient de noter la décomposition en série de Fourier

$$S\{f\}(t) = a_0 + \sum_{n=1}^{+\infty} a_n \cos(n\omega t) + b_n \sin(n\omega t)$$



1. (a) Déterminer la valeur de ω .

$$\omega = \frac{2\pi}{T} = 1$$

(b) Déterminer la valeur de a_0 , correspondant à la moyenne de f.

f est assimilée à une fonction impaire donc $a_0=0. \label{eq:a0}$

(c) Déterminer la valeur des coefficients a_n du développement en série de Fourier.

f est assimilée à une fonction impaire donc, pour tout entier n non nul, $a_n=0$.

2. Calculer, pour tout $n \geq 1$, b_n en fonction de A et n (uniquement).

Pour tout
$$n \ge 1$$
, $b_n = \frac{4}{T} \int_0^{\pi} A \sin(nt) dt = \frac{2A}{n\pi} (1 - \cos(n\pi)).$

(a) Calculer, en fonction de A, les coefficients b_1 , b_2 , b_3 et b_4 .

$$b_1 = \frac{4A}{\pi}$$
; $b_2 = 0$; $b_3 = \frac{4A}{3\pi}$; $b_4 = 0$.

(b) Déterminer la moyenne quadratique f_{eff}^2 de f.

$$f^2 = A^2 \text{ sur } \mathbb{R} \text{ donc } \langle f^2 \rangle = A^2.$$

(c) Déterminer la précision de l'approximation de f par la série de Fourier (tronquée) d'ordre

La précision de l'approximation de
$$f$$
 par la série de Fourier (tronquée) d'ordre 4 est donnée par $P_4=\frac{1}{2}\frac{\left(\frac{4A}{\pi}\right)^2+\left(\frac{4A}{3\pi}\right)^2}{A^2}=\frac{80}{9\pi^2}\simeq 0,9$

4. Déterminer une forme simplifiée des coefficients b_{2k} pour $k \ge 1$ et b_{2k+1} pour $k \ge 0$.

Pour tout
$$n \ge 1$$
, $b_n = \frac{2A}{n\pi} (1 - \cos(n\pi))$ donc
• $b_{2k} = 0$ pour $k \ge 1$
• $b_{2k+1} = \frac{4A}{(2k+1)\pi}$ pour $k \ge 0$.

- 5. En utilisant l'égalité de Bessel-Parseval, calculer

$$\sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2}$$

D'après la relation de bessel-Parseval, on a :

$$A^{2} = \frac{1}{2} \sum_{n=1}^{+\infty} b_{n}^{2} = \frac{1}{2} \sum_{k=0}^{+\infty} b_{2k+1}^{2} \text{ soit } A^{2} = \frac{1}{2} \sum_{k=0}^{+\infty} \left(\frac{4A}{(2k+1)\pi} \right)^{2} \text{ ce qui conduit à la l'égalité suivante}$$

$$\sum_{k=0}^{+\infty} \left(\frac{1}{(2k+1)}\right)^2 = \frac{\pi^2}{8}$$