

Contrôle de Connaissances 1 Mathématiques (OML) - 2025

Vous serez interrogé.e, durant 20 minutes, sur les questions suivantes durant la séance de TD de la semaine 42.

Les réponses doivent être complètes et justifiées.

1. Égalité des polynômes

Montrer que deux polynômes du second degré sont égaux si, et seulement si, leurs coefficients sont égaux.

(Exercice 7 du TD 1).

2. Forme canonique d'un polynôme

Mettre sous forme canonique le polynôme suivant :

$$P(X) = X^2 - 4X + 3$$

Tracer la courbe de l'équation $y=x^2$ et en déduire l'allure de la courbe de P. (Exercice 7 du TD 1).

3. Mesure principale d'un angle

Déterminer la mesure principale d'un angle α tel que :

$$\alpha = \frac{53\pi}{3}$$

En déduire $\cos(\alpha)$ et $\sin(\alpha)$. (Exercice 1 du TD 1).

4. Représentation graphique d'une fonction trigonométrique

Représenter graphiquement la fonction suivante :

$$x \mapsto \cos\left(x + \frac{\pi}{4}\right)$$

(Exercice 7 du TD 1).

5. Périodicité d'une fonction cosinus

Montrer que la fonction $f:t\mapsto\cos(\omega t)$ est périodique de période T à préciser. (Démonstration de cours)

6. Résolution d'une équation trigonométrique

Résoudre l'équation suivante :

$$\sin(x) = 0, 5$$

(Exercice 6 du TD 1).

7. Résolution avec la tangente

Tracer la courbe de la fonction tan et résoudre l'équation :

$$\tan(x) = 1$$

(Exercice 6 du TD 1).

8. Expression trigonométrique

Soit x un réel quelconque. **Utiliser un cercle trigonométrique** pour exprimer, en fonction de $\sin(x)$ et $\cos(x)$, l'expression suivante :

$$\sin\left(\frac{3\pi}{2} + x\right) + \sin\left(3\pi + x\right) + \cos\left(5\pi - x\right) + \cos\left(x - \frac{\pi}{2}\right)$$

(Exercice 7 du TD 1).

9. Résolution d'une équation exponentielle

Résoudre l'équation suivante :

$$e^{10x} - 3e^{5x} + 2 = 0$$

(Exercice 9 du TD 1).

10. Résolution d'une équation complexe

Résoudre l'équation suivante :

$$z^2 + z + 1 = 0$$

(Exercice traité lors cours sur les complexes).