

Mémento de Mathématiques pour le GEII

Année universitaire 2025-2026

Auteur : Florent ARNAL

Adresse électronique : florent.arnal@u-bordeaux.fr

Site: http://flarnal.e-monsite.com

BASES DE CALCUL

I Puissances

Soient a et b des réels, p et q étant des entiers.

$$a^{p} \times a^{q} = a^{p+q}$$
 $(a^{p})^{q} = a^{pq}$ $\frac{a^{p}}{a^{q}} = a^{p-q}$ $(ab)^{p} = a^{p} \times b^{p}$

Notation scientifique:

Un nombre réel A s'écrit sous forme scientifique sous la forme

$$A = D \times 10^p$$

où D est un nombre décimal n'ayant qu'un seul chiffre non nul avant la virgule.

II Identités remarquables

Identités remarquables de degré 2 :

$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$
$$(a-b)^{2} = a^{2} - 2ab + b^{2}$$
$$a^{2} - b^{2} = (a-b) \times (a+b)$$

Identités remarquables de degré 3 :

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

Formule du binôme de Newton:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$
 où $\binom{n}{k} = \frac{n!}{k! (n-k)!}$.

Les coefficients binomiaux $\binom{n}{k}$ peuvent se retrouver en utilisant le triangle de Pascal. Soit n un entier naturel non nul.

$$n! = 1 \times 2 \times 3 \times \cdots \times (n-1) \times n$$

Par convention : 0! = 1.

III Équation de droite

Soient $A(x_A; y_A)$ et $B(x_B; y_B)$ deux points du plan muni d'un repère avec $x_A \neq x_B$. La droite (AB) a une équation de la forme

$$y = m(x - x_A) + y_A$$

avec
$$m = \frac{\Delta y}{\Delta x} = \frac{y_B - y_A}{x_B - x_A}$$
.

FONCTIONS CIRCULAIRES ET TRIGONOMÉTRIE

I Fonctions circulaires

• $\forall x \in \mathbb{R}$, on a : $-1 \le \cos(x) \le 1$ et $-1 \le \sin(x) \le 1$.

• $\forall x \in \mathbb{R}$, on a : $\cos^2(x) + \sin^2(x) = 1$.

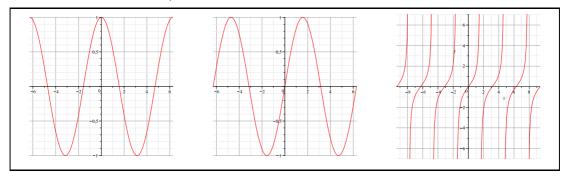
• Les fonctions sin et cos sont définies sur \mathbb{R} , à valeurs dans [-1;1].

• Les fonctions sin et cos sont 2π -périodiques.

• sin est impaire et cos est paire.

• La fonction tangente est définie par : $\tan x = \frac{\sin x}{\cos x}$ pour tout $x \neq \frac{\pi}{2}[2\pi]$. Elle est π -périodique.

Courbes des fonctions cos, sin et tan :



Périodicité:

Lorsque $\omega > 0$ les fonctions du type $t \mapsto \sin(\omega t + \varphi)$ sont périodiques de période $T = \frac{2\pi}{\omega}$.

II Formules de Trigonométrie

Relations liés au cercle trigonométrique :

$$\sin(-\theta) = -\sin\theta$$
 $\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta$ $\sin(\pi - \theta) = \sin\theta$ $\cos(-\theta) = \cos\theta$ $\cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta$ $\cos(\pi - \theta) = -\cos\theta$ $\tan(-\theta) = -\tan\theta$ $\tan\left(\frac{\pi}{2} - \theta\right) = \frac{1}{\tan\theta}$ $\tan(\pi - \theta) = -\tan\theta$

Valeurs remarquables:

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin \theta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\tan \theta$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	non défini

Formules d'addition et duplication :

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$\cos(a-b) = \cos a \cos b + \sin a \sin b$$

$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

$$\sin(a-b) = \sin a \cos b - \cos a \sin b$$

$$\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}.$$

Formules de duplication:

- $\cos(2a) = \cos^2 a \sin^2 a = 2\cos^2 a 1 = 1 2\sin^2 a$.
- $\sin(2a) = 2\sin a \cos a$.

Formules de réduction du carré:

$$\cos^2 x = \frac{1 + \cos(2x)}{2}$$
 et $\sin^2 x = \frac{1 - \cos(2x)}{2}$.

Formules de développement :

$$\cos(a+b) + \cos(a-b) = 2\cos a \cos b$$

$$\sin(a+b) + \sin(a-b) = 2\sin a \cos b$$

$$\cos(a+b) - \cos(a-b) = -2\sin a \sin b$$

$$\sin(a+b) - \sin(a-b) = 2\cos a \sin b.$$

Formules de factorisation:

$$\cos a \cos b = \frac{\cos(a+b) + \cos(a-b)}{2} \qquad \qquad \sin a \sin b = \frac{\cos(a-b) - \cos(a+b)}{2}$$

$$\sin a \cos b = \frac{\sin(a+b) + \sin(a-b)}{2} \qquad \qquad \cos a \sin b = \frac{\sin(a+b) - \sin(a-b)}{2}.$$

Transformation de sommes en produits :

$$\begin{array}{ll} \cos p + \cos q = 2\cos\frac{p+q}{2}\cos\frac{p-q}{2} & \cos p - \cos q = -2\sin\frac{p+q}{2}\sin\frac{p-q}{2} \\ \sin p + \sin q = 2\sin\frac{p+q}{2}\cos\frac{p-q}{2} & \sin p - \sin q = 2\cos\frac{p+q}{2}\sin\frac{p-q}{2}. \end{array}$$

Résolution d'équations trigonométriques :

- $\cos a = \cos b \Leftrightarrow b = a [2\pi]$ ou $b = -a [2\pi]$.
- $\sin a = \sin b \Leftrightarrow b = a [2\pi]$ ou $b = \pi a [2\pi]$.

Transformation d'une expression du type $a\cos(\omega t) + b\sin(\omega t)$:

$$a\sin(\omega t) + b\cos(\omega t) = A\sin(\omega t + \varphi)$$
 avec $A = \sqrt{a^2 + b^2}$ et $\begin{cases} a = A\cos\varphi \\ b = A\sin\varphi \end{cases}$.

III Linéarisation

Formules d'Euler:

$$\cos \theta = \frac{e^{j\theta} + e^{-j\theta}}{2}$$
 $\sin \theta = \frac{e^{j\theta} - e^{-j\theta}}{2j}$.

NOMBRES COMPLEXES

I Module et arguments

Soient z = a + jb (de module ρ et d'argument θ) et z' deux nombres complexes non nuls.

Détermination du module et d'un argument :

$$z = \rho (\cos \theta + j \sin \theta) = \rho e^{j\theta} \text{ avec } \begin{cases} a = \rho \cos \theta \\ b = \rho \sin \theta \end{cases} \text{ soit } \begin{cases} \rho = \sqrt{a^2 + b^2} \\ \cos \theta = \frac{a}{\rho} \\ \sin \theta = \frac{b}{\rho} \end{cases}.$$

Lorsque a est non nul, on a: $\tan \theta = \frac{b}{a}$ donc $\theta = \arctan\left(\frac{b}{a}\right) + k\pi$ avec $k = \begin{cases} 0 & \text{si } a > 0 \\ 1 & \text{si } a < 0 \end{cases}$.

Propriétés du module et d'un argument :

▶ Module d'un nombre complexe :

Si z = a + ib, alors:

$$|z| = \sqrt{a^2 + b^2}$$

▶ Produit de deux nombres complexes :

$$|zz'| = |z| \cdot |z'|$$
 et $\arg(zz') \equiv \arg(z) + \arg(z') [2\pi]$

Donc, pour tout $n \in \mathbb{N}$:

$$|z^n| = |z|^n$$
 et $\arg(z^n) \equiv n \arg(z) [2\pi]$

► Conjugué d'un nombre complexe :

$$|\bar{z}| = |z|$$
 et $\arg(\bar{z}) \equiv -\arg(z) [2\pi]$

▶ Inverse d'un nombre complexe non nul :

$$\left|\frac{1}{z}\right| = \frac{1}{|z|}$$
 et $\arg\left(\frac{1}{z}\right) \equiv -\arg(z) \left[2\pi\right]$

▶ Quotient de deux nombres complexes :

$$\left|\frac{z}{z'}\right| = \frac{|z|}{|z'|}$$
 et $\arg\left(\frac{z}{z'}\right) \equiv \arg(z) - \arg(z') [2\pi]$

▶ Produit par le conjugué :

$$z\bar{z} = |z|^2$$

► Caractérisation des réels :

$$z \in \mathbb{R} \quad \Leftrightarrow \quad z = 0 \quad \text{ou} \quad \arg(z) \equiv 0 \ [\pi]$$

► Caractérisation des imaginaires purs :

$$z$$
 est imaginaire pur \Leftrightarrow $\arg(z) \equiv \frac{\pi}{2} [\pi]$

II Equations

Equation du second degré :

• Si $\Delta = 0$ alors l'équation $az^2 + bz + c = 0$ admet une unique solution : $z_0 = \frac{-b}{2a}$. On a alors :

$$az^2 + bz + c = a(z - z_0)^2$$

• Si Δ est non nul alors l'équation $az^2+bz+c=0$ admet deux racines distinctes : $z_1=\frac{-b-\delta}{2a}$ et $z_2=\frac{-b+\delta}{2a}$ où δ est une racine carrée de Δ . On a alors :

$$az^{2} + bz + c = a(z - z_{1})(z - z_{2})$$

Racines n-ièmes de l'unité :

Soit n un entier naturel non nul.

L'équation $z^n = 1$ admet n solutions distinctes de la forme

$$e^{\frac{2jk\pi}{n}}$$
 avec $k \in [0; n-1]$

FONCTIONS

Autour de ln et exp

Propriétés algébriques de ln et exp:

Soient a et b deux réels strictement positifs.

- $\ln(ab) = \ln(a) + \ln(b)$ et $\ln\left(\frac{a}{b}\right) = \ln(a) \ln(b)$.
- $\forall p \in \mathbb{R}, \ln(a^p) = p \ln(a).$

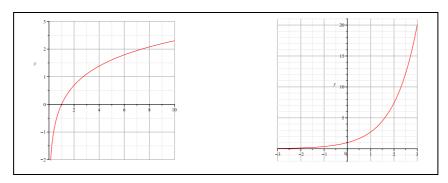
Soient a et b deux réels.

- $e^{a+b} = e^a e^b$ et $e^{a-b} = \frac{e^a}{e^b}$.
- $\forall n \in \mathbb{R}, (e^a)^n = e^{na}.$

Lien entre ln et exp:

- $\forall x \in \mathbb{R}$, on a : $\ln(e^x) = x$.
- $\forall y > 0$, on a : $e^{\ln y} = y$.

Courbes des fonctions ln et exp:



Fonction exponentielle de base a > 0:

La fonction exponentielle de base a, notée \exp_a , est définie par : $\exp_a(x) = a^x = e^{x \ln a}$.

7

Théorème des croissances comparées :

- $\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$ et $\lim_{x \to 0^+} x \ln(x) = 0$. $\lim_{x \to -\infty} x e^x = 0$ et $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$.
- Si a > 1: $\lim_{x \to -\infty} x a^x = 0$ et $\lim_{x \to +\infty} \frac{a^x}{x} = +\infty$.
- Si 0 < a < 1: $\lim_{x \to +\infty} xa^x = 0$ et $\lim_{x \to -\infty} \frac{a^x}{x} = -\infty$.
- Si $\alpha > 0$ alors $\lim_{x \to 0^+} x^{\alpha} \ln(x) = 0$ et $\lim_{x \to +\infty} \frac{\ln(x)}{x^{\alpha}} = 0$. $\forall \alpha \in \mathbb{R}$, on a : $\lim_{x \to -\infty} |x|^{\alpha} e^x = 0$ et $\lim_{x \to +\infty} \frac{e^x}{x^{\alpha}} = +\infty$.

II Equivalents

Soient f et g deux fonctions définies sur un voisinage V de a pouvant être un réel, $+\infty$ ou $-\infty$. Si g est non nulle au voisinage de a, on a :

$$f \sim_a g \Leftrightarrow \lim_{x \to a} \frac{f(x)}{g(x)} = 1.$$

DÉRIVATION

Définition et application :

Soit f une fonction définie sur un intervalle I contenant x_0 .

- On dit que f est dérivable en x_0 si $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}$ existe et est finie.
- On a alors : $f(x_0 + h) = f(x_0) + hf'(x_0) + h\varepsilon(h)$ avec $\lim_{h\to 0} \varepsilon(h) = 0$.

Dérivées des fonctions usuelles :

Fonction $x \mapsto$	Dérivée $x \mapsto$	Ensemble de dérivabilité
k (constante)	0	\mathbb{R}
x^n	nx^{n-1}	$\mathbb{R} \text{ si } n > 0 \text{ et } \mathbb{R}^* \text{ si } n < 0$
$\frac{1}{x}$	$\frac{-1}{x^2}$	\mathbb{R}^*
\sqrt{x}	$\frac{1}{2\sqrt{x}}$	$]0;+\infty[$
$\sin x$	$\cos x$	\mathbb{R}
$\cos x$	$-\sin x$	\mathbb{R}
$\ln x$	$\frac{1}{x}$	$]0;+\infty[$
e^x	$\frac{x}{e^x}$	\mathbb{R}
$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$] - 1;1[
$\arccos x$	$-\frac{1}{\sqrt{1-x^2}}$] - 1;1[
$\arctan x$	$\frac{1}{1+x^2}$	\mathbb{R}

Opérations sur les fonctions dérivées :

Sous réserve d'existence et de dérivabilité, on a :

Opérations	Formules de la dérivée
Produit uv	u'v + uv'
Inverse $\frac{1}{v}$	$\frac{-v'}{v^2}$
Quotient $\frac{u}{v}$	$\frac{u'v - uv'}{v^2}$
Réciproque f^{-1}	$\frac{1}{f' \circ f^{-1}}$

8

Dérivée d'une composée et applications :

Sous réserve d'existence et de dérivabilité, on a : $(v \circ u)'(x) = u'(x) \times v'(u(x))$. On en déduit que :

• Pour tout $n \in \mathbb{N}$, on a: $(u^n)' = nu'u^{n-1}$.

- $\bullet (e^u)' = u'e^u.$
- $(\sqrt{u})' = \frac{u'}{2\sqrt{u}}$ et $(\ln u)' = \frac{u'}{u}$.
- $\bullet \ \left(\frac{1}{u^n}\right)' = -n\frac{u'}{u^{n+1}} \text{ où } n \in \mathbb{N}^\star.$

INTÉGRATION

Primitives fondamentales:

•
$$\int u'(x)e^{u(x)} dx = e^{u(x)}.$$

•
$$\int \frac{u'(x)}{u(x)} dx = \ln(|u(x)|).$$

•
$$\int u'(x)u^{\alpha}(x) dx = \frac{u^{\alpha+1}(x)}{\alpha+1}$$
 pour tout $\alpha \neq -1$.

Propriétés de l'intégrale :

Soient f et g deux fonctions continues sur I, a, b, c trois réels de I et α et β deux réels quelconques.

• Linéarité de l'intégrale :
$$\int\limits_a^b (\alpha f + \beta g)(t) \; \mathrm{d}t = \alpha \int\limits_a^b f(t) \; \mathrm{d}t + \beta \int\limits_a^b g(t) \; \mathrm{d}t.$$

• Relation de Chasles :
$$\int_{a}^{b} f(t) dt = \int_{a}^{c} f(t) dt + \int_{c}^{b} f(t) dt.$$

Valeurs moyenne et efficace d'un signal périodique :

• La valeur moyenne d'une fonction
$$f$$
 T -périodique est définie par $: \langle f \rangle = \frac{1}{T} \int_{0}^{T} f(x) dx$.

• La valeur efficace d'une fonction
$$f$$
 T -périodique est définie par : $f_{eff} = \sqrt{\frac{1}{T} \int_{0}^{T} f^{2}(x) dx}$.

Intégration par parties :

Soient u et v deux fonctions dérivables sur [a; b] à dérivées continues sur [a; b].

$$\int_{a}^{b} u'(t)v(t) dt = [u(t)v(t)]_{a}^{b} - \int_{a}^{b} u(t)v'(t) dt.$$

Méthode ALPES:

On dérive (passage de v à v') la première fonction trouvée (en lisant de gauche à droite) ...

Changement de variable :

Soient α et β deux réels, φ étant une fonction continûment dérivable strictement monotone sur $[\alpha; \beta]$ et f une fonction continue sur [a; b] avec $\varphi(\alpha) = a$ et $\varphi(\beta) = b$. On a :

$$\int_{a}^{b} f(x) dx = \int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) dt.$$

INTÉGRALES IMPROPRES

I Généralités

Fonctions localement intégrables :

Toute fonction continue est localement intégrable.

Convergence d'une intégrale impropre :

Soit
$$[a; b[$$
 un intervalle de \mathbb{R} , $a \in \mathbb{R}$ et $b \in \mathbb{R} \cup \{+\infty\}$. On dit que $\int_a^b f$ converge si $\lim_{x \to +\infty} \int_a^x f$

existe et est finie. Sinon, on dit que
$$\int_a^b f$$
 diverge.

Point méthode pour l'étude de la convergence :

On peut avoir deux bornes d'intégration généralisées, par exemple $-\infty$ et $+\infty$, il faut impérativement couper l'intégrale et étudier séparément chaque borne.

Intégrales de Riemann:

•
$$\int_{1}^{+\infty} \frac{1}{t^{\alpha}} dt$$
 est convergente si et seulement si $\alpha > 1$.

•
$$\int_{0}^{1} \frac{1}{t^{\alpha}} dt$$
 est convergente si et seulement si $\alpha < 1$.

II Intégration de fonctions positives

1. Condition nécessaire et suffisante de convergence : Soit
$$f$$
 une fonction positive définie sur $[a;b[$.

$$\int\limits_a^b f \text{ converge si et seulement si } x \mapsto \int\limits_a^x f \text{ est bornée sur } [a;b[.$$

2. Comparaison de fonctions positives :

Soient f et g deux fonctions définies sur [a; b] telles que $0 \le f \le g$.

• Si
$$\int_{a}^{b} g$$
 converge alors $\int_{a}^{b} f$ converge.

• Si
$$\int_a^b f$$
 diverge alors $\int_a^b g$ diverge.

3. Intégrales et fonctions équivalentes :

Soient
$$f$$
 et g deux fonctions positives définies sur $[a;b[$. Si, au voisinage de b , les fonctions positives f et g sont équivalentes alors les intégrales $\int\limits_a^b f$ et $\int\limits_a^b g$ sont de même nature.

DECOMPOSITION EN ELEMENTS SIMPLES

Partie entière d'une fraction rationnelle :

La partie entière de $F = \frac{P}{Q}$ s'obtient en effectuant la division de P par Q. E est non nul si $\deg(P) \ge \deg(Q)$.

On a alors : $F = \frac{P}{Q} = E + \frac{R}{Q}$ où R est le reste de la division euclidienne.

Théorème de décomposition en éléments simples :

La fraction rationnelle $F = \frac{P}{Q}$ s'écrit de manière unique sous la forme :

$$F = E + \sum_{i=1}^{r} \sum_{j=1}^{\alpha_i} \frac{P_{ij}}{(Q_i)^j}$$

où, pour tout $i \in \{1; 2; \dots; r\}$ et tout $j \in \{1; 2; \dots; \alpha_i\}$, $\deg(P_{ij}) < \deg(Q_i)$.

Dans $\mathbb{R}(X)$, comme deg $(P_{ij}) < \deg(Q_i)$, deux cas peuvent se présenter :

- si Q_i est un polynôme du premier degré alors P_{ij} est une constante (de la forme λ).
- si Q_i est un polynôme du second degré avec $\Delta < 0$ alors P_{ij} est de la forme $\lambda x + \mu$.

Décompositon d'une fraction rationnelle avec des coefficients réels :

Si le corps de base est \mathbb{R} , on décompose le quotient $\frac{R}{Q}$ sous la forme d'une somme :

- d'éléments simples de première espèce du type $\frac{\lambda}{(x-\alpha)^j}$ avec λ réel et j entier naturel non nul.
- d'éléments simples de deuxième espèce du type $\frac{\lambda x + \mu}{(ax^2 + bx + c)^j}$ avec λ et μ réels , j entier naturel non nul $(b^2 4ac < 0)$.

Exemple:

Décomposer, en éléments simples, la fraction rationnelle : $F\left(X\right)=\frac{X^4+3X^3+4X^2+5X+2}{X^4+X^3+X^2}$.

- Les deux polynômes sont de même degré donc la partie entière est non nulle. Après division euclidienne, on a : $F(X) = 1 + \frac{2X^3 + 3X^2 + 5X + 2}{X^4 + X^3 + X^2}$.
- Dans $\mathbb{R}[X]$, on factorise $X^4 + X^3 + X^2$ en $X^2(X^2 + X + 1)$ car $X^2 + X + 1$ a un discriminant négatif.

Il y a donc deux polynômes irréductibles : X (de degré 1) et $X^2 + X + 1$ (de degré 2).

12

Il en résulte que : $\frac{2X^3 + 3X^2 + 5X + 2}{X^2(X^2 + X + 1)} = \frac{a}{X} + \frac{b}{X^2} + \frac{cX + d}{X^2 + X + 1}.$

• On obtient : $F(X) = 1 + \frac{1}{X} + \frac{2}{X^2} + \frac{X+2}{X^2+X+1}$.

DÉVELOPPEMENTS LIMITÉS

I Formule de Taylor-Young

ullet Si la fonction f est dérivable en a jusqu'à l'ordre n alors

$$f(x) = f(a) + (x - a)f'(a) + \frac{(x - a)^2}{2!}f''(a) + \dots + \frac{(x - a)^n}{n!}f^{(n)}(a) + (x - a)^n\varepsilon(x) \text{ où } \lim_{x \to a} \varepsilon(x) = 0.$$

• Au voisinage de 0, on obtient :

Si f est une fonction dérivable n fois en 0 alors f peut s'écrire :

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \dots + \frac{x^n}{n!}f^{(n)}(0) + x^n\varepsilon(x)$$
 où $\lim_{x\to 0} \varepsilon(x) = 0$.

II DL usuels au voisinage de 0

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!}x^3 + \dots + \frac{\alpha(\alpha-1)(\alpha-2)\dots(\alpha-n+1)}{n!}x^n + x^n\varepsilon(x)$$

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots + x^n + x^n \varepsilon(x)$$

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots + (-1)^n x^n + x^n \varepsilon(x)$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n} + x^n \varepsilon(x)$$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + x^{n} \varepsilon(x)$$

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + x^{2n} \varepsilon(x)$$

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + x^{2n+1} \varepsilon(x)$$

$$\tan(x) = x + \frac{x^3}{3} + \frac{2x^5}{15} + x^5 \varepsilon(x)$$

avec
$$\lim_{x\to 0} \varepsilon(x) = 0$$

ÉQUATIONS DIFFÉRENTIELLES

I Généralités sur la résolution d'une ED

Méthode générale pour la résolution :

Soient a, b et c des fonctions définies et continues sur I.

Si y_p est une solution particulière de (E): a(x)y' + b(x)y = c(x) alors les solutions de (E) sont les fonctions de la forme $x \mapsto y_p(x) + y_H(x)$ avec y_H solution de l'équation homogène.

Ainsi : l'ensemble des solutions de (E) est obtenu en ajoutant à toutes les solutions de (E_H) : a(x)y' + b(x)y = 0 une solution (particulière) de (E).

Principe de superposition:

Considérons une équation différentielle du type : $y' + a(x)y = b_1(x) + b_2(x)$. Si, pour $i \in \{1; 2\}$, y_i est solution de l'équation différentielle $y' + a(x)y = b_i(x)$ alors la fonction $y_1 + y_2$ est solution (particulière) de $y' + a(x)y = b_1(x) + b_2(x)$.

Les deux théorèmes précédents s'étendent à des ED du second ordre.

II ED du 1^{er} ordre

Résolution de l'ED y' = a(x)y:

Les solutions sont de la forme $y(x) = Ce^{A(x)}$ où A est une primitive de a et C est une constante.

Méthode de séparation des variables :

(E) est dite à variables séparées si elle peut s'écrire sous la forme $f(y) \times y' = g(x)$. Si F et G sont respectivement des primitives de f et g, on obtient alors : F(y) = G(x) + K où K est une constante (réelle).

Recherche de solutions particulières de l'équation différentielle (E): y'+a(x)y=b(x): Dans un premier temps, on peut chercher une solution particulière de "même nature" que le second membre.

- Si $b(x) = Ae^{\alpha x}$ alors on cherche y_p de la forme $y_p(x) = Ke^{\alpha x}$.
- Si b(x) = P(x) où P est un polynôme alors on cherche y_p de la forme $y_p(x) = Q(x)$ où Q est un polynôme (souvent de même degré).
- Si $b(x) = A\cos(\alpha x) + B\sin(\alpha x)$ alors on cherche y_p de la forme $y_p(x) = K\cos(\alpha x) + K'\sin(\alpha x)$.

Méthode de la variation de la constante :

Pour déterminer une solution particulière, on peut également la rechercher par la méthode de variation de la constante qui suit :

On rappelle que $(E_H): y' + a(x)y = 0$ admet pour solution $: y_H: x \mapsto Ce^{-A(x)}$ où A est une primitive de a.

On cherche désormais y_p de la forme $y_p(x) = C(x)e^{-A(x)}$ avec C fonction dérivable.

Par détermination de primitive, on trouve C puis y_p .

III Equations différentielles du second ordre à coefficients constants

Définition:

Une équation différentielle linéaire du 2^{nd} ordre, à coefficients constants, est une équation différentielle qui peut s'écrire sous la forme

$$ay'' + by' + cy = f(x) \quad (E)$$

où a, b et c sont des réels $(a \neq 0)$ et f une fonction continue sur I. On appelle équation homogène associée (ou équation sans second membre) l'équation

$$ay'' + by' + cy = 0$$
 (E_H) .

On appelle équation caractéristique associée l'équation

$$ar^2 + br + c = 0$$
 (E_C).

Solutions de l'équation homogène ay'' + by' + cy = 0:

- Si $\Delta > 0$ alors l'équation caractéristique admet deux solutions distinctes α et β . Les solutions de (E_H) sont de la forme $x \mapsto Ae^{\alpha x} + Be^{\beta x}$ avec A et B parcourant \mathbb{R} .
- Si $\Delta = 0$ alors l'équation caractéristique admet une unique solution α . Les solutions de (E_H) sont de la forme $x \mapsto (Ax + B) e^{\alpha x}$ avec A et B parcourant \mathbb{R} .
- Si $\Delta < 0$ alors l'équation caractéristique admet deux solutions complexes conjuguées $\lambda \pm j\mu$. Les solutions de (E_H) sont de la forme $x \mapsto e^{\lambda x} (A\cos(\mu x) + B\sin(\mu x))$ avec A et B parcourant \mathbb{R} .

Recherche de solutions particulières de l'équation différentielle ay'' + by' + cy = f(x): Pour chercher une solution particulière, on se contentera de chercher des solutions de même nature que le second membre f(x).

TRANSFORMÉES DE LAPLACE

Définition de la transformée de Laplace d'une fonction f :

Sous réserve d'existence, on a : $\mathcal{L}\{f\}(p) = \int_0^{+\infty} f(t) e^{-pt} dt$.

Transformées de Laplace et dérivation :

 $\mathcal{L}\left\{f'\right\}\left(p\right) = p\mathcal{L}\left\{f\right\}\left(p\right) - f\left(0\right).$

 $\mathcal{L}\left\{f''\right\}(p) = p^2 \mathcal{L}\left\{f\right\}(p) - pf\left(0\right) - f'\left(0\right).$ Plus généralement, on a : $\mathcal{L}\left\{f^{(n)}\right\}(p) = p^n \mathcal{L}\left\{f\right\}(p) - p^{n-1}f(0) - \dots - f^{(n-1)}(0).$

Transformées de Laplace de fonctions :

Expression temporelle	Expression de la transformée de Laplace
$u\left(t ight)$	$\frac{1}{p}$
$\delta\left(t ight)$	1
$\cos(\omega t) u(t)$	$\frac{p}{p^2 + \omega^2}$
$\sin(\omega t) u(t)$	$\frac{\omega}{p^2 + \omega^2}$
$t^{n}u\left(t\right)$	$\frac{n!}{p^{n+1}}$
$e^{-at} u(t)$	$\frac{1}{p+a}$
t f(t) u(t)	$-\frac{\mathrm{d}}{\mathrm{d}p}[\mathcal{L}\left\{f\right\}](p)$
$f\left(at\right)u\left(t\right)$	$\frac{1}{a}\mathcal{L}\left\{f\right\}\left(\frac{p}{a}\right)$
$e^{-at} f(t) u(t)$	$\mathcal{L}\left\{ f\right\} \left(p+a\right)$
f(t-a)u(t-a)	$e^{-ap}\mathcal{L}\left\{f\right\}\left(p\right)$
f fonction périodique de période T	$\mathcal{L}_0(p) \times \frac{1}{1 - \mathrm{e}^{-pT}}$ où \mathcal{L}_0 est la transformée du motif
f * g (produit de convolution)	$\mathcal{L}\left\{f\right\}\left(p\right)\times\mathcal{L}\left\{g\right\}\left(p\right)$

SUITES

Convergence et divergence des suites :

Définition:

Soit (u_n) une suite numérique et ℓ un réel. On dit que (u_n) converge vers ℓ si : $\forall \varepsilon > 0$, il existe un entier N tel que $\forall n \ge N, |u_n - \ell| \le \varepsilon$. On note $\lim_{n \to \infty} u_n = \ell$. Si (u_n) n'est pas convergente, on dit qu'elle est divergente.

Suites arithmétiques :

Soit (u_n) une suite arithmétique de raison r.

- $\forall n \in \mathbb{N}, u_n = u_0 + nr.$
- $\forall n \in \mathbb{N}, \sum_{k=0}^{n} u_k = (n+1)u_0 + \frac{n(n+1)}{2}r = (n+1)\frac{u_0 + u_n}{2}.$

Suites géométriques :

Soit (u_n) une suite géométrique de raison $q \neq 1$.

- $\forall n \in \mathbb{N}, u_n = u_0 q^n$.
- $\bullet \ \forall n \in \mathbb{N}, \sum_{k=0}^{n} u_k = u_0 \frac{1 q^{n+1}}{1 q}.$
- Si |q| < 1 alors (u_n) converge vers 0.
- Si |q| > 1 alors (u_n) diverge.

Suites adjacentes: Deux suites (u_n) et (v_n) sont adjacentes si:

- l'une est croissante, l'autre est décroissante.
- $\lim (u_n v_n) = 0.$

Deux suites adjacentes convergent et ont la même limite.

Suites arithmético-géométriques :

Une suite (u_n) est dite arithmético-géométrique s'il existe deux réels a et b tels que : $\forall n \geq 0$, on a : $u_{n+1} = au_n + b$.

Pour déterminer l'expression de u_n en fonction de n, on introduit une suite auxiliaire géométrique (v_n) (dans le cas où $a \neq 1$) telle que :

 $v_n = u_n - \ell$ où ℓ la solution de l'équation $\ell = a\ell + b$.

 ℓ correspond à la limite éventuelle de la suite.

SÉRIES

Définition d'un série :

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels.

- Le réel S_n défini par $S_n = \sum_{k=0}^n u_k$ est appelé somme partielle de rang n.
- La suite (S_n) des sommes partielles est appellée série de terme général u_n . On la note : $\sum u_n$ voire $\sum_{n\in\mathbb{N}} u_n$.

Nature des séries numériques :

On dit que la série de terme général u_n converge si la suite (S_n) admet une limite finie. Cette limite est appelée somme de la série.

On note :
$$\sum_{n=0}^{+\infty} u_n = \lim_{n \to +\infty} S_n$$
.

Condition nécessaire de convergence :

Si la série $\sum u_n$ converge alors $\lim_{n\to+\infty}u_n=0$. Attention, la condition n'est pas suffisante.

Par exemple la série de terme général $u_n = \frac{1}{n}$ est divergente alors que $\lim_{n \to +\infty} u_n = 0$.

Nature de séries fondamentales :

• Séries géométriques : La série $\sum q^n$ est convergente si et seulement si |q| < 1. Lorsque |q| < 1, on a l'égalité :

$$\sum_{n=0}^{+\infty} q^n = \frac{1}{1-q}.$$

• Séries de Riemann : La série $\sum \frac{1}{n^{\alpha}}$ converge si et seulement si $\alpha > 1$.

Opérations avec les séries :

Si $\sum u_n$ et $\sum v_n$ sont des séries convergentes et si a et b sont des réels alors la série $\sum (au_n + bv_n)$ est convergente. On pourra donc écrire : $\sum (au_n + bv_n) = a \sum u_n + b \sum v_n$.

Séries à termes positifs :

- 1. Condition nécessaire et suffisante de convergence : Une série $\sum u_n$ à termes positifs est convergente si et seulement $\exists M \in \mathbb{R}$ tel que, $\forall n \in \mathbb{N}$, $\sum_{k=0}^{n} u_k \leq M$.
- $2. \ \,$ Comparaisons de séries à termes positifs :

Soient (u_n) et (v_n) deux suites à termes positifs avec $u_n \leq v_n$ à partir d'un rang n_0 .

- Si la série $\sum u_n$ diverge alors la série $\sum v_n$ diverge.
- Si la série $\sum v_n$ converge alors la série $\sum u_n$ converge.
- 3. Séries et équivalents : Considérons deux séries $\sum u_n$ et $\sum v_n$ à termes positifs. Si $u_n \sim v_n$ alors les deux séries $\sum u_n$ et $\sum v_n$ sont de même nature.

Convergence absolue:

La série $\sum u_n$ est dite absolument convergente si la série de terme général $|u_n|$ est convergente.

Si la série $\sum u_n$ est absolument convergente alors la série $\sum u_n$ est convergente et on a :

$$\left| \sum_{n=0}^{+\infty} u_n \right| \le \sum_{n=0}^{+\infty} |u_n|.$$

SÉRIES DE FOURIER

I Théorème de Dirichlet :

Si f est \mathcal{C}^1 par morceaux et T-périodique alors la série de Fourier converge vers la régularisée de f. Ainsi :

$$S_n(f)(t) = a_0 + \sum_{k=1}^n \left(a_k \cos(k\omega t) + b_k \sin(k\omega t) \right) \underset{n \to +\infty}{\longrightarrow} \frac{f(t^+) + f(t^-)}{2}$$

II Coefficients réels et séries de Fourier

Définition:

- $a_0 = \langle f \rangle = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) dt.$
- Pour tout $n \in \mathbb{N}^*$, $a_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cos(n\omega t) dt$.
- Pour tout $n \in \mathbb{N}^*$, $b_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \sin(n\omega t) dt$.

Propriété:

- Si f est paire alors, pour tout entier n non nul, $b_n = 0$ et $a_n = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \cos(n\omega t) dt$.
- Si f est impaire alors, pour tout entier n non nul, $a_n = 0$ et $b_n = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \sin(n\omega t) dt$.

III Coefficients complexes et séries de Fourier

Propriété:

- Pour tout $n \in \mathbb{N}^*$, $c_n = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) e^{-jn\omega t} dt$
- Pour tout $n \in \mathbb{N}^*$, $c_n = \frac{a_n jb_n}{2}$ et $c_{-n} = \frac{a_n + jb_n}{2} = \bar{c_n}$
- Pour tout $n \in \mathbb{N}^*$, $a_n = c_n + c_{-n}$ et $b_n = j(c_n c_{-n})$

IV Égalité de Bessel-Parseval

$$\langle f^2 \rangle = a_0^2 + \frac{1}{2} \sum_{n=1}^{+\infty} (a_n^2 + b_n^2) = \sum_{n=-\infty}^{+\infty} |c_n|^2$$

V Taux de distorsion

Le taux de distorsion est défini par $D = \frac{\text{Valeur efficace des harmoniques}}{\text{Valeur efficace du fondamental}} = \sqrt{\frac{\displaystyle\sum_{n=2}^{+\infty} \left(a_n^2 + b_n^2\right)}{a_1^2 + b_1^2}}.$

TRANSFORMÉES DE FOURIER

I Généralités

La transformée de Fourier d'une fonction f est définie par

$$\mathcal{F}(f)(\omega) = \int_{-\infty}^{+\infty} f(t) e^{-j\omega t} dt$$

II Propriétés

- Si f est paire alors $\mathcal{F}(f)(\omega) = 2 \int_0^{+\infty} f(t) \cos \omega t \, dt$ est réelle.
- Si f est impaire alors $\mathcal{F}(f)(\omega) = -2j \int_0^{+\infty} f(t) \sin \omega t \, dt$ est imaginaire pure.
- La transformée de Fourier conserve la parité.
- La transformée de Fourier est linéaire. Pour tous réels a et b, pour toutes fonctions f et g admettant une transformée de Fourier, on a :

$$\mathcal{F}\left(af(t) + bg(t)\right)(\omega) = a\mathcal{F}\left(f(t)\right)(\omega) + b\mathcal{F}\left(g(t)\right)(\omega)$$

• Lien avec la transformée de Laplace (Cas d'un signal causal)

$$\mathcal{F}(f)(\omega) = \mathcal{L}(f)(j\omega)$$

• Transformées usuelles :

Expression temporelle	Expression de la transformée de Fourier
f(t- au)	$\mathcal{F}(f)(\omega)e^{-j\omega\tau}$
$f(t) e^{j\omega_0 t}$	$\mathcal{F}\left(f\right)\left(\omega-\omega_{0}\right)$
$f^{(n)}(t)$	$(j\omega)^n \mathcal{F}(f)(\omega)$
$\delta(t)$	1
(f*g)(t)	$\mathcal{F}\left(f\right)\left(\omega\right)\cdot\mathcal{F}\left(g\right)\left(\omega\right)$

III Autour de l'impulsion et du produit de convolution

Propriété de l'impulsion : $f(x) = \int_{-\infty}^{+\infty} f(t) \cdot \delta(t-x) dt$ donc $f(0) = \int_{-\infty}^{+\infty} f(t) \cdot \delta(t) dt$.

Produit de convolution des fonctions f et $g:(f*g)(t)=\int_{-\infty}^{+\infty}f(t-x)\cdot g(x)\,\mathrm{d}x.$

Relation entre signal d'entrée u_e et signal de sortie u_s :

$$u_s = h * u_e$$
 ie $u_s(t) = (h * u_e)(t) = \int_{-\infty}^{+\infty} h(t - x) \cdot u_e(x) dx = \int_{-\infty}^{+\infty} h(x) \cdot u_e(t - x) dx$

On a donc

$$\mathcal{F}(u_s)(\omega) = \mathcal{F}(h)(\omega) \cdot \mathcal{F}(u_e)(\omega)$$

TRANSFORMÉES EN \mathcal{Z}

La transformation en \mathcal{Z} est une application qui transforme une suite $f = \{f(nT_e)\}$ (définie sur \mathbb{N}) en une fonction $F: z \mapsto \mathcal{Z}\{f(nT_e)\}$ d'une variable complexe telle que :

$$\mathcal{Z}\{f(nT_e)\}(z) = \sum_{n=0}^{+\infty} f(nT_e)z^{-n}, \quad z \in \{z \in \mathbb{C} \text{ tel que } \sum_{n=0}^{+\infty} f(nT_e)z^{-n} \text{ converge}\}.$$

Terme général de la suite $\{f(nT_e)\}$	Expression de la transformée en ${\mathcal Z}$
$\delta\left(nT_{e} ight)$	1
$u\left(nT_{e}\right)$	$\frac{z}{z-1}$
$nT_e.u\left(nT_e ight)$	$\frac{zT_e}{(z-1)^2}$
$a^{nT_e}.u\left(nT_e\right)$	$\frac{z}{z - a^{T_e}}$
$\cos\left(\omega nT_{e}\right).u\left(nT_{e}\right)$	$\frac{z^2 - z\cos(\omega T_e)}{z^2 - 2z\cos(\omega T_e) + 1}$
$\sin\left(\omega nT_{e}\right).u\left(nT_{e}\right)$	$\frac{z\sin(\omega T_e)}{z^2 - 2z\cos(\omega T_e) + 1}$

Propriétés de la transformée en $\mathcal Z$:

•
$$\mathcal{Z}\left\{f\left([n-m]T_e\right)\right\}(z) = z^{-m}\mathcal{Z}\left\{f\left(nT_e\right)\right\}(z).$$

•
$$\mathcal{Z}\left\{f\left([n+1]T_{e}\right)\right\}(z) = z\left[\mathcal{Z}\left\{f\left(nT_{e}\right)\right\}(z) - f\left(0\right)\right] \text{ et}$$

 $\mathcal{Z}\left\{f\left([n+2]T_{e}\right)\right\}(z) = z^{2}\left[\mathcal{Z}\left\{f\left(nT_{e}\right)\right\}(z) - f\left(0\right) - \frac{1}{z}f\left(T_{e}\right)\right].$

•
$$\mathcal{Z}\left\{a^{nT_e}f(nT_e)\right\}(z) = F\left(\frac{z}{a^{T_e}}\right)$$
 où $F(z) = \mathcal{Z}\left\{f(nT_e)\right\}(z)$.

•
$$\mathcal{Z}\left\{nT_ef(nT_e)\right\}(z) = -zT_eF'(z)$$
 où $F(z) = \mathcal{Z}\left\{f(nT_e)\right\}(z)$.

•
$$\mathcal{Z}\{x \star y\}(z) = \mathcal{Z}\{x\}(z) \times \mathcal{Z}\{y\}(z).$$

Théorème de la valeur initiale : $\lim_{z \to +\infty} \mathcal{Z} \{f(nT_e)\}(z) = f(0)$.

Théorème de la valeur finale : $\lim_{n\to+\infty} f(nT_e) = \lim_{z\to 1} (z-1) \mathcal{Z} \{f(nT_e)\}(z).$

STATISTIQUES DESCRIPTIVES

I Statistique univariée

Soit $(x_i; n_i)_{1 \le i \le p}$ une série statistique telle que $\sum_{i=1}^p n_i = n$.

La moyenne (pondérée) de la série est le réel noté \overline{x} défini par :

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{p} n_i x_i$$

La variance de cette série est définie par :

$$\sigma_X^2 = \frac{1}{n} \sum_{i=1}^p n_i (x_i - \overline{x})^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - \overline{x}^2$$

Le réel σ_X est appelé écart-type de la série (x_i) .

Le réel $SCE_X = \sum_{i=1}^p n_i (x_i - \overline{x})^2$ est appelé Somme des Carrés des écarts (à la moyenne). On note :

$$\sigma_X^2 = \frac{SCE_X}{n}$$

II Statistique bivariée

La covariance de X et Y est le réel, noté $\mathbb{C}ov(X,Y)$ voire σ_{XY} , telle que :

$$\mathbb{C}ov(X,Y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y}) = \frac{1}{n} \sum_{i=1}^{n} x_i y_i - \overline{x} \overline{y} = \overline{x} \overline{y} - \overline{x} \overline{y}$$

Une équation de la droite d'ajustement de Y en X est donc Y=aX+b avec

$$a = \frac{\mathbb{C}ov(X,Y)}{\mathbb{V}(X)} \text{ et } b = \overline{y} - a\overline{x}$$

Le coefficient de corrélation R d'une série statistique à deux variables X et Y vérifie :

$$R = \frac{\sigma_{XY}}{\sigma_X \times \sigma_Y}$$

Le coefficient de détermination \mathbb{R}^2 d'une série statistique à deux variables X et Y vérifie :

$$R^2 = \frac{SCE_{\text{exp}}}{SCE_{\text{totale}}}$$

Il correspond ainsi à la part de variabilité de Y expliquée par la régression.

On a la relation:

$$SCE_{\text{totale}} = SCE_{\text{exp}} + SCE_{\text{res}}$$

soit

$$SCE_Y = SCE_{\hat{Y}} + SCE_{res}$$

PROBABILITÉS ET STATISTIQUES INFÉRENTIELLES

I Conditionnement et indépendance

Soient A et B deux évènements de l'univers Ω , on a :

- $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$.
- $\mathbb{P}\left(\overline{A}\right) = 1 \mathbb{P}\left(A\right)$.

Soit Ω un univers associé à une expérience aléatoire et B un événement de probabilité non nulle.

On appelle probabilité de A sachant B le nombre, noté $\mathbb{P}_B(A)$, défini par :

$$\mathbb{P}_{B}(A) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

Soient Ω un univers associé à une expérience aléatoire, A et B étant deux événements. A et B sont indépendants si $\mathbb{P}(A \cap B) = \mathbb{P}(A) \times \mathbb{P}(B)$.

II Espérance, variance et covariance

Soit X une variable aléatoire discrète prenant les valeurs x_1, x_2, \cdots . L'espérance de X est le réel, noté $\mathbb{E}(X)$, défini par :

$$\mathbb{E}(X) = \sum_{i} x_i \mathbb{P}(X = x_i)$$

Théorème de transfert :

Soit X une variable aléatoire discrète prenant les valeurs x_1, x_2, x_3, \ldots et φ une fonction définie sur $\varphi(X(\Omega))$. On a :

$$\mathbb{E}\left(\varphi\left(X\right)\right) = \sum_{i} \varphi\left(x_{i}\right) \mathbb{P}\left(X = x_{i}\right)$$

Soit X une variable aléatoire discrète prenant les valeurs x_1, x_2, \cdots . La **variance** de X est le réel, noté $\mathbb{E}(X)$, défini par

$$\mathbb{V}(X) = \mathbb{E}(X^2) - [\mathbb{E}(X)]^2 = \sum_{i} x_i^2 \mathbb{P}(X = x_i) - [\mathbb{E}(X)]^2$$

Soient X une variable aléatoire discrète et a, b deux réels. On a :

$$\mathbb{E}(aX + b) = a\mathbb{E}(X) + b$$

$$\mathbb{V}(aX+b) = a\mathbb{V}(X)$$

On a : $\sigma(aX + b) = |a| \sigma(X)$.

Espérance d'une somme de variables aléatoires

Considérons un couple de variables aléatoires (X;Y) admettant une espérance et une variance. On a :

$$\mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y)$$
 et $\mathbb{E}(X-Y) = \mathbb{E}(X) - \mathbb{E}(Y)$

Covariance de deux variables

La covariance de deux variables aléatoires X et Y, notée $\mathbb{C}ov(X,Y)$ est définie par :

$$\mathbb{C}ov(X,Y) = \mathbb{E}\left[(X - \mathbb{E}(X)) \left(Y - \mathbb{E}(Y) \right) \right]$$

La covariance de deux variables aléatoires X et Y est telle que :

$$\mathbb{C}ov(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$$

Si deux variables aléatoires X et Y sont indépendantes alors

$$\mathbb{C}ov(X,Y) = 0$$

Variance d'une somme de variables aléatoires indépendantes

Soient X et Y deux variables aléatoires. On a

$$\mathbb{V}(X+Y) = \mathbb{V}(X) + \mathbb{V}(Y) + 2\mathbb{C}ov(X,Y)$$

En outre, si X et Y sont indépendantes alors

$$\mathbb{V}\left(X+Y\right)=\mathbb{V}\left(X\right)+\mathbb{V}\left(Y\right)$$

III Lois usuelles discrètes

Si X suit la loi binomiale $\mathcal{B}(n,p)$ alors

$$\mathbb{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k} \quad \forall k \in [0; n]$$

$$\mathbb{E}(X) = np$$
 et $\mathbb{V}(X) = np(1-p) = npq$

Si X suit la loi de **Poisson** $\mathcal{P}(\lambda)$ alors

$$\mathbb{P}(X = k) = e^{-\lambda} \frac{\lambda^k}{k!} \quad \forall k \in \mathbb{N}$$

$$\mathbb{E}(X) = \lambda \quad \text{et} \quad \mathbb{V}(X) = \lambda$$

IV Variables aléatoires continues

On appelle fonction densité de probabilité, toute fonction f définie sur \mathbb{R} , telle que :

- f est continue sur \mathbb{R} (sauf éventuellement en quelques valeurs);
- f est positive sur \mathbb{R} ;

$$\bullet \int_{-\infty}^{+\infty} f(t) \, \mathrm{d}t = 1.$$

La fonction de répartition d'une variable aléatoire X est définie par

$$F_X(x) = \mathbb{P}(X \le x) = \int_{-\infty}^x f(t) dt$$

- $\mathbb{P}(a \le X \le b) = F_X(b) F_X(a)$ et $\mathbb{P}(X > b) = 1 F_X(b)$.
- La fonction F_X est croisante sur \mathbb{R} et $0 \leq F_X \leq 1$.

Soit X une variable aléatoire continue de densité de probabilité f.

• L'espérance de X est le réel, noté $\mathbb{E}(X)$, défini par

$$\mathbb{E}(X) = \int_{-\infty}^{+\infty} t f(t) dt$$

• La variance de X est le réel, noté $\mathbb{V}(X)$, défini par

$$\mathbb{V}(X) = \mathbb{E}\left([X - \mathbb{E}(X)]^2\right) = \mathbb{E}\left(X^2\right) - \mathbb{E}(X)^2$$

où
$$\mathbb{E}(X^2) = \int_{-\infty}^{+\infty} t^2 f(t) dt$$
.

V Lois normales

Si X est distribuée suivant la loi normale $\mathcal{N}(\mu, \sigma)$ alors :

 $X^* = \frac{X - \mu}{\sigma}$ est distribuée suivant la loi normale $\mathcal{N}(0; 1)$ appelée loi normale centrée réduite.

Propriétést de la loi normale centrée réduite :

Pour tout réel x positif, on a :

$$\Phi\left(-x\right) + \Phi\left(x\right) = 1$$

Pour tout réel x positif, on a :

$$\mathbb{P}\left(-x \le U \le x\right) = 2\Phi\left(x\right) - 1$$

VI Lois exponentielles

Une loi de probabilité est exponentielle de paramètre λ si sa fonction de densité de probabilité est la fonction f définie sur par

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{si} \quad x \ge 0\\ 0 & \text{sinon} \end{cases}$$

Soit X une variable aléatoire distribuée suivant la loi exponentielle de paramètre λ et a un réel positif. On a :

$$\mathbb{P}(X < a) = 1 - e^{-\lambda a}$$

Ainsi, la fonction de répartition F d'une loi exponentielle de paramètre λ peut être définie par :

$$F_X(x) = \begin{cases} 1 - e^{-\lambda x} & \text{si} \quad x \ge 0\\ 0 & \text{sinon} \end{cases}$$

Propriété d'absence de mémoire :

Soit X une variable aléatoire distribuée suivant la loi exponentielle de paramètre λ , s et t étant deux réels positifs. On a :

$$\mathbb{P}_{\left(X>s\right)}\left(X>t+s\right)=\mathbb{P}\left(X>t\right)$$

VII Estimation

La variable $\hat{S}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$ est un estimateur non biaisé de σ^2 .

 $\hat{s^2}$ est donc une estimation ponctuelle de la variance $\mu.$ On note :

$$\hat{\sigma}^2 = \hat{s}^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2 = \frac{SCE_X}{n-1}$$

Théorème Central Limite (TCL):

Soit (X_n) une suite de variables aléatoires indépendantes et de même loi (i.i.d.), d'espérance μ et d'écart type σ . Soit $S_n = \sum_{k=1}^n X_k$ et $S_n^* = \frac{S_n - \mathbb{E}(S_n)}{\sigma(S_n)}$.

 (S_n^*) converge (en loi) vers une variable aléatoire distribuée suivant la loi $\mathcal{N}(0,1)$.

Soit (X_n) une suite de variables aléatoires indépendantes et de même loi (i.i.d.), d'espérance μ et d'écart type σ .

 $\frac{X_n - \mu}{\frac{\sigma}{\sqrt{n}}}$ converge (en loi) vers une variable aléatoire distribuée suivant la loi $\mathcal{N}(0, 1)$.

En pratique, pour $n \geq 30$, on pourra noter :

$$\frac{\bar{X}_n - \mu}{\frac{\sigma}{\sqrt{n}}} \stackrel{\sim}{\hookrightarrow} \mathcal{N}(0,1) \text{ voire } \bar{X} \stackrel{\sim}{\hookrightarrow} \mathcal{N}\left(\mu; \frac{\sigma}{\sqrt{n}}\right).$$

Soit (X_n) une suite de variables distribuées suivant la loi $\mathcal{B}(p)$. On a :

$$\frac{F-p}{\sqrt{\frac{p(1-p)}{n}}} \xrightarrow{\mathcal{L}} X \text{ où } X \sim \mathcal{N}(0;1)$$

Loi de Student:

Soit $(X_i)_{1\leq i\leq n}$ une suite de variables indépendantes de même loi $\mathcal{N}\left(\mu;\sigma\right)$. On a :

$$\frac{\bar{X} - \mu}{S} \hookrightarrow \mathcal{T}(n-1)$$

$$\frac{\sqrt{n-1}}{\sqrt{n-1}}$$

Intervalle de confiance d'une moyenne :

Lorsque $X \sim \mathcal{N}(\mu; \sigma)$ avec σ connu, une estimation par intervalle de confiance de μ , au niveau de confiance $1 - \alpha$, est donnée par :

$$\left[\overline{x} - q_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}; \overline{x} + q_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right]$$

VIII Fiabilité

Fonction de fiabilité :

La fonction de fiabilité notée R est définie, pour tout $t \geq 0$, par

$$R(t) = \mathbb{P}\left(T \ge t\right)$$

 $R(t) = \mathbb{P}(T \ge t)$ correspond à la probabilité que le dispositif fonctionne à l'instant t.

Fonction de défaillance :

La fonction de défaillance notée F est définie, pour tout $t \geq 0$, par

$$F(t) = \mathbb{P}\left(T \le t\right)$$

 $F(t) = \mathbb{P}(T \leq t)$ correspond à la probabilité que le dispositif soit en panne à l'instant t (durée de vie inférieure à t).

F correspond à la fonction de répartition de T.

Pour tout t positif, on a : R(t) = 1 - F(t).

Durée de vie moyenne :

La durée de vie moyenne se note \mathbf{MTBF} (Moyenne des Temps de Bon Fonctionnement) voire MTTF (Mean Time To Failure). Elle correspond à :

$$\mathbb{E}(T) = \int_{0}^{+\infty} t f(t) \, dt$$