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Chapitre 1

DEVELOPPEMENTS LIMITES

I Théoreme de Rolle

Théoréme 1 : (Théoreme de Rolle)
Soit f une fonction continue sur un intervalle [a; ] et dérivable sur |a; b| telle que f(a) = f(b).
Il existe un réel ¢ € Ja; b[ tel que f'(c) = 0.

FIGURE 1.1 — Illustration du théoréeme de Rolle

I Formule des accroissements finis

Théoréme 2 : (TAF)
Soit f une fonction continue sur un intervalle [a;b] et dérivable sur ]a; b|.
f(b) = f(a)

Il existe ¢ € ]a; b[ tel que f'(c) = b
—a

FIGURE 1.2 — Illustration du TAF

Démonstration : Posons g : x — f(z) — f(a) — %(x —a).

D’apres ’énoncé du TAF, il existe ¢ € Ja; b[ tel que : f(b) = f(a) + f'(c) (b — a).
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IIT Formules de Taylor

III.1 Formule de Taylor-Lagrange

Théoréme 3 : (Formule de Taylor-Lagrange)
Soit f une fonction admettant des dérivées continues jusqu’a 'ordre n sur [a;b] et dérivable & 1'ordre
(n+ 1) sur |a;b|. 1l existe ¢ € ]a; b[ tel que :

(b—a)?
2l

7@+ L= o

(b—a)"*

N R

f(b) = f(a) + (b —a)f'(a) +

Démonstration :
La formule de Taylor-Lagrange est une conséquence directe du théoreme de Rolle.

(*)
Introduisons la fonction g définie par : g(z) = f(b) — Z * (”“)( —x)¥ — K(b— )" on K est choisi de sorte

que g(a) = 0. Ainsi : f(b) — Z " )(a)( —a)f = K(b—a)"tL.
Puisque g(a) = g(b) =0, le theoreme de Rolle permet de justifier existence d’un réel ¢ €]a; b[ tel que : ¢'(c) = 0.
Or:g¢g'(z) = —W(b—x) + K(n+1)(b— )™ donc —%(b—c} +Kn+1)(b-c)"=0.

Comme a < ¢ < b, ona:b—c7é()d0ncif(n:!)(c)JrK(nJrl):O.
Onadonc: K(n+1)= % soit K — f("“)(c)'

(n+1)!
Il en résulte que : f(b) — > %(b —a)k = f((::i)(() (b—a)"*tt. O
k=0

REMARQUE 1 :

En considérant les mémes hypotheses, avec a = 0 et b = z, il existe ¢ compris entre 0 et = tel que :
'n.+1

F(@) = FO)+f'(0)+ S £7(0) + ... + Zp FV(0) + Zpyr FHD (e) -

Exercice 1.1 Déterminer une approximation de la fonction sin au voisinage de 0 par un polynéme de degré
3 en utilisant la formule de Taylor-Lagrange.

'S

. .3
sin(r) —x + %

On en déduit une majoration de lerreur qui est la suivante :

[

s . . 3
FIGURE 1.3 — Courbes représentatives de sin et x — x — &
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III.2 Formule de Taylor-Young

On rappelle que, sous certaines hypothéses on a :
fl@)=fla)+ (x —a)f'(a) + (z—a) a) @)+ ...+ (z=a)® a) ™ (a) + Wf( n+1)(¢) ot ¢ est entre a et .

%f "“)(c). En divisant par (z — a)", on obtient : H),f("Jr (c).
Si f"1(c) est fini alors ce quotient tend vers 0 lorsque x tend vers a.

Plus généralement, on a le théoréme ci-dessous.

Considérons le reste

Théoréme 4 : (Formule de Taylor-Young)
Si la fonction f est dérivable en a jusqu’a l'ordre n alors

f@) = fla) + @ —a) f'(a) + 5L (@) + .. + E=a)” £ (a) + (z — a)"e(x) ou lim e(z) = 0.

r—a

REMARQUE 2 :

Si f est une fonction dérivable n fois en 0 alors f peut s’écrire :
2 T .
f(@) = fO0)+zf'(0)+% f"(0)+...4+ Z; f(M(0) +ame(z)  avec h_)m0 e(r) =0.

IV  Equivalents

(DEFINITION 1 : )

Soient f et g deux fonctions définies sur un voisinage V' de a pouvant étre un réel, +o0o ou —oo.

On dit que f est équivalente & g en a, et on note f ~ g, s’il existe une fonction & définie sur V telle que :
a

\V.T eV, f(z)=[1+¢e(x)] g(x) avec ilil%a(ac) = 0. y

Théoréme 5 :
Soient f et g deux fonctions définies sur un voisinage V' de a pouvant étre un réel, +0o ou —oo.
Si g est non nulle au voisinage de a, on a :

f(=z)

f~ ~9 si et seulement si lim ——= = 1.
z—a g(x)

Exemple 1 =+ 2% 4 62 — 7 et 2 +— 22 sont équivalentes en +oo.
p

REMARQUE 3 : En l'infini, un polynome est équivalent a son terme de plus haut degré.

PROPRIETE 1 :
e Si f~getgn~ halors f~ h.
a a a
h o

e Sifi~gyet for~goalors fifor~gigo et .
b b a s

REMARQUE 4 : Les équivalents sont conservés par produit et quotient d’apres ce qui précede mais ils ne le sont
ni par sommation, ni par composition.
Par exemple, considérons e*+! et e®
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Exercice 1.2 Utilisation d’équivalents

222 — 4z + 1
1. Déterminer un équivalent, en 400, de f : x — Qz’?’—l—im:;jl
2. Déterminer un équivalent en 0 de g : x — sin(2z)In (1 + z) et en déduire lim0 @
T— X

V Développements limités

V.1 Généralités

DEFINITION 2 : Soit f est une fonction définie au voisinage de a.
On dit que f admet un développement limité & l'ordre n en a, noté DL, (a), s’il existe un polynéme P
de degré n (appelée partie réguliere du DL) tel que :

f(z) = P(x)+ (z —a)"e(z) avec lime(xz)=0.

Tr—a

REMARQUE 5 : Si f est une fonction définie au voisinage de 0, f admet un DL d’ordre n en 0 s’il existe un
polynome P de degré n tel que :
f(z) = P(x) + 2"e(z) avec lime(z)=0.

x—0

REMARQUE 6 : (DL et Formule de Taylor-Lagrange)
La formule de Taylor-Young assure qu’'une fonction f, dérivable n fois au point a, admet un DL, (a).
On a:
"(a (n) a .
flx) = fla)+ f'(a)(@—a) + L 2(! )(ac —a)?+ ..+ fT,()(x —a)"+ (x —a)"e(x) avec lime(z)=0.

Tr—a

REMARQUE 7 : (DL d’orde 1 et tangente)

Si f est dérivable en a alors f(x) = f(a) + f'(a)(z — a) + (z — a)e(x).

La partie réguliere P(z) = f(a) + f'(a)(z — a) est a rapprocher de 'équation de la tangente & la courbe de f
au point d’abscisse a : y = f(a) + f/'(a)(z — a).
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V.2 Développements limités en 0

PROPRIETE 2 : (DL au voisinage de 0)
Une fonction f, dérivable n fois en 0, admet un DL, (0). On a :

o f(@) = FO)+ FO)r+ L0 4+ L0 4 ane(a)  avee  lim e(x) = 0.
e f(z) Y £(0)+ f/(0)x + %x o+ %zn

PROPRIETE 3 :
e Si f admet un DL, (0) (n > 1) alors f est dérivable en 0.
e Si f admet un DL, (0) alors celui-ci est unique (P et ¢ uniques).
e P ala méme parité que f.
e Si f admet un DL, (0) alors elle admet un DL, (0) pour tout p <n .

Déterminons des DL(0) des fonctions : exp: z+>e®; g: x> (1 +2)% et h:x — sinz.

Ces fonctions étant infiniment dérivables, on peut utiliser la formule de Taylor-Young :
(n

f(z) = f(0)+ f(0)z + fQ(IO) e S A (0) " 4+ z"e(x) avec 121%5(30) =0.
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Théoréme 6 : (DL en 0)

-1 -1 =2 =1 —2)...(ax— 1
1+2z)*=1+o0x+ a(Oé2' )9524‘ oo 3)'(04 )$3+---+ ale ~1)(e ,) la—nt )$"+x”5($)-
S 502 503 " "

e’ = +z+§+§+~~+m+z e(x).

.’L'3 .’L'5 $2n+1 9
i == —dk — —ococ Y ) n+1
sin(x) = a0 + =] + (1) Gt + =" e (x).

etg:xrx— 1+

Exercice 1.3 Déterminer le DL3(0) des fonctions f : x — T
x

PROPRIETE 4 : (Opérations sur les DL)

Soient f et g admettant des DL, (0) de parties régulieres respectives Py et P,.

e La somme f + g admet un DL, (0) de partie réguliere Py + P,.

e Le produit fg admet un DL, (0). La partie réguliere s'obtient en effectuant Py x P, et en ne

gardant que les termes de degré inférieur ou égal a n.

Exercice 1.4 Déterminer le DL3(0) de x — €* x /1 + x.
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PROPRIETE 5 : (Dérivation et intégration)

e Si f admet un DL,,(0) et vérifie les hypotheses du théoréme de Taylor-Young, f’ admet un d’ordre
DLnfl(O) et Py = (Pf)/.

e Si f admet un DL, (0) , toute primitive F' de f admet un DL, 11(0) et Pp s’obtient en intégrant
P avec Pr(0) = F(0).

Exercice 1.5 Déterminer le DL, (0) de x — In (1 + z) et le DL, (0) de cos.

Théoréme 7 : (DL en 0)
2 3 n

In(1+2) =2 - % +4 % e (1)2—1% + 2 (z).
— JE_ JE_ ... _1\n L " 2n
cos(z) =1— 51 + i + (1) o)l + z°"e(x).

PROPRIETE 6 : (DL de fonctions composées)
Si g(0) = 0 alors f o g admet un DL, (0) de partie principale Py o P, en ne gardant que les termes de
degré inférieur ou égal a n.
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Exercice 1.6 DL et composées
1. Déterminer le DL3(0) de z +— &2,
2. Déterminer le DL4(0) de x — —In(cosx) et en déduire le DL3(0) de tan.
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REMARQUE 8 : Si une fonction f admet un DL;(0) alors elle est dérivable (il y a équivalence).

Cette implication n’est pas vraie dans le cas d’un ordre n > 1.

En effet, la fonction f définie par : f(z) = 2®sin (Zz) pour tout = # 0 et f(0) = 0 admet un DLy(0) car
f(x) = 2%e(x).

f est dérivable et on a f’'(z) = 3z%sin(Z) — 2cos (%) pour tout z # 0 et f/(0) = 0 (cf. limite du taux
d’accroissement).

f! n’est pas continue en 0 donc f’ n’est pas dérivable en 0 ce qui permet de conclure que f”(0) n’est pas défini.
Voici donc un exemple de fonction dont la dérivée seconde n’est pas définie en 0 mais qui admet un DL2(0).

Exercice 1.7 DL d’un inverse

M¢éthode :
Supposons que f(x) = ag+ a1z + ... + apz™ + x™e(x) avec ap # 0 au voisinage de 0.
En écrivant ﬁ = 1 1 1

1 P TR
- X = = X —— on peut former un développement limité a
a0 1+(%x+...+i—gm"+xn5(rﬂ)) a " ltu peut | pp

lordre n de f en O ...

Application : Déterminer le DL4(0) de x — .
cos T
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V.3 Développement en un réel ry non nul

Méthode :

Pour déterminer un développement limité en xy d’une fonction f, on relocalise le probleme en 0 via
le changement de variable x = xg + h.

On détermine alors un développement limité en 0 de la fonction h +— f(xo + h) puis on transpose ce
DL en développement limité en xy en remplacant h par x — xg.

Exercice 1.8 Déterminer le DL d’ordre 2 de In en 3.

V.4 Notion de développement asymptotique

(DEFINTTION 3 @ Soit f une fonction définie sur un intervalle du type ]a; +oo et n € N*. )
On appelle développement asymptotique d’une fonction f en +oo a la précision #, toute écriture

— n 1 g —
\f(:n)—ao—i—%—i—z—%—i—---—i—%—i—ﬁs(x) avec IETOOE(QC)_O' )

PROPRIETE 7 : Soit f une fonction définie sur un intervalle du type Ja; +oo].
f admet un développement asymptotique en +oo si g(x) = f (%) admet un DL en 0.
Dans ce cas Pp(z) = Py (1).

x

Exercice 1.9 Déterminer le développement asymptotique de f en 400 a la précision é pour la fonction

fix— 1+%.
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V.5 Applications des développements limités

V.5.1 Calcul de limites

V1 +sin(z) — 1'

Exercice 1.10 Déterminer, si elle existe, lim
0 tan(z)

V.5.2 Etude de branche infinie

Exercice 1.11 Déterminer la position relative de la courbe représentative de f : x — /22 + 4x par rapport
a son asymptote au voisinage de +00.
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Chapitre 2

INTEGRALES IMPROPRES

I Généralités

I.1 Fonctions localement intégrables

sur tout intervalle fermé borné contenu dans l'intervalle I.

[DEFINITION 1 : Une fonction définie sur un intervalle I est localement intégrable si elle est intégrable]

On rappelle que toute fonction continue sur un fermé borné est intégrable.
On pourra donc utiliser la propriété suivante :

| PROPRIETE 1 : Toute fonction continue est localement intégrable.

1.2 Définition

/DEFINITION 2 : Soit [a;b] un intervalle de R, a € R et b € RU {+00}.

b s
On dit que / f converge si lin}) / f existe et est finie.
—
a a

b
Sinon, on dit que / f diverge.
a

o

J

REMARQUE 1 : Cette définition s’étend aux intervalles de la forme Ja;b] o a € RU{—o0} et b € R.

+oo “+o0
. "1 "1
Exercice 2.1 Ftudier la nature des intégrales suivantes : / 7] dt et / n dt.
1 1

13
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dt.

Sl -

1
Exercice 2.2 Etudier la nature de /
0

Théoréme 1 :
—+o0

Si f est une fonction continue sur R telle que Em f=4¢>0 alors / f(t) dt est divergente.
o0

0

Démonstration :

COROLLAIRE 1 : Soit f est une fonction continue, positive sur R et admettant une limite en +oo.

+oo
Si / f(t) dt est convergente alors 1+im f=0.
0

REMARQUE 2 : Soit f est une fonction continue et positive sur R telle que Em f=0.
o0
o
L’intégrale / f(t) dt peut converger mais ce n’est pas certain ...

1
“+oo

“+oo
"1 1
En effet, / 7] dt est convergente alors que / n dt est divergente.

1 1
Il s’agit donc d’une condition nécessaire mais pas suffisante!
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IT Propriétés

PROPRIETE 2 : _
e Soit f : I — R continue telle que / f converge.
I

b c b
Pour tous a, b, ¢ distincts éléments ou extrémités de I, on a : / flt)dt= / flt)dt +/ ft)de

avec convergence des intégrales engagées.
e Une combinaison linéaire de fonctions dont 'intégrale converge fournit une intégrale convergente.

REMARQUE 3 : On peut avoir deux bornes d’intégration généralisées, par exemple —oo et +oo, il faut
impérativement couper l'intégrale et étudier séparément chaque borne.

Théoréme 2 : (Intégrales de Riemann)
+oo

1
° / = dt est convergente si et seulement si o > 1.

1
1

1
° / P dt est convergente si et seulement si o < 1.
0

Démonstration du premier point :
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III Intégration de fonctions positives

x
Le comportement de fonctions positives est un cas particulier plus simple car la fonction F' : z — f f est
a

croissante. Dans cette partie, nous considérerons des fonctions définies sur [a; b].
On rappelle que si F' est majorée alors elle admet une limite finie.
Si F' n’est pas majorée alors F' diverge vers +oc.

PROPRIETE 3 : Soit f une fonction positive définie sur [a; b].

b T
/f converge si et seulement si x +— / f est majorée sur [a;b].

a a

b
REMARQUE 4 : Si / f diverge alors cette intégrale diverge vers +oo.

a

Théoréme 3 : (Théoreme de comparaison)

Soient f et g deux fonctions définies sur [a; [ telles que 0 < f < g.
b b

e Si / g converge alors / f converge.
a

a

g diverge.

e

b
e Si / f diverge alors

Démonstration

+oo
Exercice 2.3 Etudier la nature de l'intégrale /
0

—t

e
— dt.
142




III. INTEGRATION DE FONCTIONS POSITIVES

Théoréme 4 : (Intégrales de fonctions équivalentes)

Soient f et g deux fonctions définies sur [a;b[. Si, au voisinage de b, les fonctions positives f et g sont
b b

équivalentes alors les intégrales / f et / g sont de méme nature.

a a

Démonstration dans le cas ou b correspond & 400 :

—+o0

3
Exercice 2.4 Montrer que / m dt est convergente et la calculer.
1

17
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IV Intégration par parties et changement de variables

Théoreme 5 : Si f et g sont deux fonctions dérivables, & dérivées continues, sur [a; b[ alors

pous tout = € [aidl, [ (g (¢) dt = (OO ~ [ (g’ ®)

a
Si ces deux expressions ont une limite finie en b alors

b b
/ (g (1) dt = [FBg®)] — / £ (g (t) dt

Théoréme 6 : Si ¢ est dérivable, & dérivée continue et réalise une bijection croissante de [a;b[ dans

B b
[c; B] et si f est continue sur [a; ([ alors /f(t) dt et /f (p (1) ¢ (t) dt sont de méme nature.

De plus, en cas de convergence, on a

B b

/ fwydt = / fe) ¢ (@) dt

[e3% a

“+o0
Exercice 2.5 En admettant sa convergence, calculer / te™ " dt.

0

—+o0

-Vt
Exercice 2.6 A l'aide d’un changement de variable u = \/t, déterminer / c

Vit

dt.
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V  Absolue convergence

Théoréme 7 :
Si f une fonction définie sur I telle que / | f | converge alors / f converge et on a

I I

I/fél/lfl

Démonstration dans le cas d’une fonction réelle :

e Cas ou f est a valeurs positives : C’est immédiat compte tenu des résultats qui précedent.

e Cas ou f est a valeurs quelconques :

On pose : fi =sup(f,0) et f_ = sup(—f,0).
Les fonctions f;, f— sont définies sur I, positives, continues par morceaux et vérifient

f=f—f

On a aussi :
0<fr <|fl et 0<f_ <|f]

On suppose que / f converge donc, par comparaison, / f+ et / f— convergent.

Or f=fy — f- donc / f converge également.

En outre, —|f| < f <|f] donc f <[ Ifl
[

—+oo
, int
Exercice 2.7 Etudier la nature de / %dt.
1
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Chapitre 3

EQUATIONS DIFFERENTIELLES

I Equations différentielles du premier ordre

I.1 Généralités

( /. re . . ’ . . . . . z . re )
DEFINITION 1 : Une équation différentielle est du 1°" ordre si elle ne fait intervenir que la dérivée

premiere d’une fonction. )
|\

EFINITION 2 : (Equations différentielles linéaires d’ordre 1)
On appelle équation différentielle linéaire du 1°* ordre sur I toute équation différentielle qui peut s’écrire
sous la forme
a(z)y’ +b(x)y = c(x) (E)
ou a,b et ¢ sont des fonctions continues sur I de R telles que Va € I, a(z) # 0.
On appelle équation homogene associée (ou équation sans second membre) ’équation

a(x)y’ +b(x)y=0 (Eg).

\Qrsque les fonctions a et b sont constantes, on parle d’équation a coefficients constants. /

Exemple 2 Différents types d’EDL d’ordre 1
e iy + xy = x est une équation différentielle linéaire d’ordre 1 sur R.
o y'(x) + zy =0 est I’équation homogéne associée.
e iy + 2y = 4 est une équation différentielle linéaire d’ordre 1 sur R a coefficients constants.

Théoréme 1 : Soient a, b et ¢ des fonctions définies et continues sur 1.
Si y, est une solution particuliere de (E) : a(z)y’ + b(x)y = c(z) alors les solutions de (E) sont les
fonctions de la forme

z = yp(2) + yu ()

avec yp solution de I’équation homogene.
Ainsi, 'ensemble des solutions de (E) est obtenu en ajoutant & toutes les solutions de (Ep ) une solution
(particuliere) de (E).

Démonstration :
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PROPRIETE 4 : (Principe de superposition)

Considérons une équation différentielle du type : ¥’ + a(x)y = b1(z) + ba(x).

Si, pour i € {1;2}, y; est solution de ’équation différentielle ' + a(x)y = b;(z) alors la fonction
y1 + Yo est solution (particuliere) de y' + a(z)y = by (x) + ba(x).

yl +ayr =b

i
] = = by + bs.
yo + ays = b (Y1 +y2) +a(ys +y2) 1+ 02

En effet, si on a : {

1.2 Résolution de I’équation homogene

Théoréme 2 : Les solutions de I'ED 3/ = a(x)y sont de la forme y(z) = Ce®) ot A est une primitive
de a et C est une constante (réelle).

Démonstration : Considérons la fonction f : z + y(x)e™A®).

Exercice 3.1 Résoudre sur R l’équation (F) :y' + xzy = 0.

REMARQUE 1 : Pour résoudre une telle équation différentielle du 1°* ordre, on peut utiliser la méthode de
séparation des variables.

(E) est dite a variables séparées si elle peut s’écrire sous la forme f(y) x y' = g(x).

On note parfois : f(y) dy = g(x) dz. Si F et G sont respectivement des primitives de f et g, on obtient alors :
F(y) = G(z) + K ou K est une constante (réelle).

Exercice 3.2 Résoudre, sur]l;4oo|, l’équation différentielle xy'Inx = (3Inxz + 1) y.
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4

Remarque importante : On ne peut résoudre “ proprement ” (EH) uniquement sur les intervalles ot les fonc-
tions considérées sont continues. Pour une solution “globale ”, il faut s’assurer que les solutions peuvent étre
prolongées.

1.3 Recherche de solutions particuliéres
1.3.1 Cas particuliers

Considérons une équation différentielle (E) : ¢’ + a(z)y = b(x).
Dans un premier temps, on peut chercher une solution particuliere de ”méme nature” que le second membre.

o Sib(xz) = Ae™® alors on cherche y, de la forme y,(z) = Ke*”.

o Sib(z) = P(x) ou P est un polynéme alors on cherche y, de la forme y,(z) = Q(z) ol Q est un polynéme
(souvent de méme degré).

o Sib(x) = Acos(ax) + Bsin(ax) alors on cherche y, de la forme y,(z) = K cos(azx) + K’ sin(ax).

Exercice 3.3 Résoudre l'équation différentielle y' = ay + b ot a et b sont des réels non nuls.

Les solutions de l’équation différentielle y' = ay + b sont donc les fonctions x — Ce®® — g.

Exercice 3.4 Résoudre l’équation différentielle y' = —2y + 2 avec y(0) = 4.

1.3.2 Méthode de la variation de la constante

Pour déterminer une solution particuliere, on peut également la rechercher par la méthode de variation de la
constante qui suit :
On rappelle que (Ey) : ¢ 4 a(x)y = 0 admet pour solution : yz : z +— Ce™4®) ol A est une primitive de a.
On cherche désormais y, de la forme
yp(x) = Clz)e A
avec C fonction dérivable. On a alors :
Y, +a(z)y, = C'(x)e @) — a(2)C(x)e™2®) 4+ a(x)C(x)e=A®) = O/ (z)e=A®),
Par suite y,, est solution de (E) si et seulement si C’(x)e™4(®) = b(z).
Par détermination de primitive, on trouve C' puis y, ...
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Exercice 3.5 Résoudre, sur R, l’équation différentielle y +y = 2% 4+ e~ 7.



II. EQUATIONS DIFFERENTIELLES DU SECOND ORDRE A COEFFICIENTS CONSTANTS 25

II Equations différentielles du second ordre a coefficients constants

IT1.1 Généralités

pﬁ?INITION 3 : Une équation différentielle linéaire du 2°¢ ordre, & coefficients constants, est une équaﬁx\
différentielle qui peut s’écrire sous la forme

ay’ + by +cy=f(z) (E)

ol a, b et ¢ sont des réels (a # 0) et f une fonction continue sur I.
On appelle équation homogene associée (ou équation sans second membre) ’équation

ay” +by' +cy=0 (En).

On appelle équation caractéristique associée I’équation
\ ar’ +br+c=0 (Ec). /

Exemple 3 ¢’ + 1y’ — 2y = z est une équation différentielle du second ordre o coefficients constants.

II1.2 Résolution de I’équation homogene

PROPRIETE 5 :

e Si yp et ya sont deux solutions (non proportionnelles) de (Ey) alors toutes les solutions de (Ey)
sont de la forme Ay; + Bys (A et B étant des constantes réelles).

e L’ensemble des solutions de (E) est obtenu en ajoutant & toutes les solutions de (Eg ) une solution
(particuliere) de (E).

Déterminons une condition pour que la fonction ¢ :  — €™ (r € C) soit solution de ’équation homogene
ay’ +by +cy=0:
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Théoréme 3 : (Solutions de (Eg) : ay” + by’ + cy = 0 dans le cadre réel)

e Si A > 0 alors I’équation caractéristique admet deux solutions distinctes a et 3.
Les solutions de (E) sont de la forme

z — Ae®® + BeP®

avec A et B parcourant R.
e Si A = 0 alors I’équation caractéristique admet une unique solution c.
Les solutions de (Eg) sont de la forme

x — (Az + B)e®”

avec A et B parcourant R.
e Si A < 0 alors ’équation caractéristique admet deux solutions complexes conjuguées \ £ ju.
Les solutions de (Eg) sont de la forme

x +— e (A cos (uz) + Bsin (ux))

avec A et B parcourant R.

Démonstration :
Soit y une fonction deux fois dérivable sur R et z définie sur R par z(z) = y(x)e™** soit y(x) = z(z)e™* o a
est une racine de (E¢).
z est deux fois dérivable et on a : y'(z) = (2/ + az)e®® et y”(z) = (27 + 22z’ + a®z)e*™.
Ainsi, si y est solution de (Eg) : ay” + by’ + cy = 0 alors [az” +2aaz’ +aa’z + bz’ + baz + cz] e*® = 0.
Il en résulte que : az” + (2ac + b)2’ + (aa? + ba + ¢)z = 0 avec « est une racine de (E¢).
On a donc : az” + (2ac + b)z" = 0.
e Cas ou (E¢) admet deux racines distinctes (A > 0)
Si B est l'autre solution de (Ec), on a: a + 3 = =2 donc 2aa + b = 2aa — a(a + 8) = a(a — 3). On a
donc : az” + a(a — 8)z’ = 0.
2" est donc solution de 'ED ay’ + a(a — 8)’ = 0 soit y' + (o — B)y = 0.
D’apres le premier paragraphe, on a : 2/(z) = Ce™ (=A% soit z(x) = Ae=(@=A* L Bon A = ﬁ%
L’égalité y(x) = z(x)e™® induit y(x) = Ae®® + BeP® avec A et B réels quelconques.
e Cas ou (E¢) admet une unique racine (A = 0)
az” + a(a — B)z’ = 0 conduit & z” = 0 car a = 52. Il s’avere que :
2" =0ssi z(z) = Az + B avec A et B réels quelconques.
On a donc : y(z) = (Ax + B) €™ avec A et B réels quelconques.
e Cas ou (E¢) admet deux racines complexes conjuguées A + ju (A > 0)
D’aprés ce qui précede, les solutions sont les fonctions z — Cetime 4 De(A=im)z oy C' et D sont des
nombres complexes.
Or, CeP+imz 4 DeA=imz = A (Celt® 4 De~IhT) et Celt® + De™iM = (C + D) cos(uz) + j(C —
D) sin(px).
Comme y(0) et y (ﬁ) doivent étre réels, on en déduit que C' + D et j(C — D) sont réels (notés respec-

tivement A et B).
Ainsi, les solutions de (Ef) sont de la forme z + e (A cos (ux) + Bsin (ux)) avec A et B parcourant
R.

Exercice 3.6 Résoudre, sur R, l’équation différentielle y” +y = 0.
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I1.3 Résolution de I’équation compléete

Pour chercher une solution particuliere, on se contentera de chercher des solutions de méme nature que le second
membre.

Exercice 3.7 Résoudre, sur R, l’équation différentielle y” + vy — 2y = x.
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x

Exercice 3.8 Résoudre, sur R, I’équation différentielle vy’ +vy' +y = e *.



Chapitre 4

SUITES

I Généralités

DEFINITION 1 : On appelle suite réelle (ou numérique) toute application u d’une partie de N dans R.
. N—+R , .

Au lieu de la noter w : oy, O la note fréquemment (uy),, ¢y voire (uy).

uy, est appelé le terme général de la suite (ainsi que terme de rang n).

L’ensemble des suites réelles se note RY.

REMARQUE 1 : On appellera désormais suite (réelle), toute application de {n € N,n > ng} dans R.

(DEFINITION 2 : Une suite (uy) est dite :

e croissante si pour tout n > 0, Upy1 = Up.

e décroissante si pour tout n = 0 , up41 < Up.

e constante si pour tout n > 0, Upt1 = Up.

e monotone si elle est croissante ou décroissante.

o) (

EFINITION 3 : La suite (uy) est dite :
e majorée s'il existe un réel M tel que pour tout entier naturel n, u, < M.
e minorée s’il existe un réel m tel que pour tout entier naturel n, m < u,.
L bornée si elle est majorée et minorée. )

On peut définir une suite (u,) de trois manieres différentes.

e Définition explicite :
Chacun des termes est exprimé en fonction de n.
Ainsi, la suite (u,) définie par u,, = cos (%) est définie de fagon explicite.

e Définition par récurrence :
Les premiers termes de la suite étant définis, un terme est défini en fonction des précédents. Ainsi, la
suite (u,,) définie par u,+1 = cosu,, est définie par récurrence.

e Définition implicite :
On connait I'existence de chacun des termes de la suite sans pour autant étre en mesure de les exprimer
de maniére explicite. Ainsi, f étant une fonction bijective de R dans R, on peut définir la suite (u,,) par

flug) =n.

IT Convergence et divergence des suites

DEFINITION 4 : Soit (u,) une suite numérique et £ un réel. On dit que (u,) converge vers £ si :
Ve > 0, il existe un entier N tel que Vn > N, |u, — ¢| < e.

On notera lim u, = /4.
n— o0

Si (u,) n’est pas convergente, on dit qu’elle est divergente.
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PROPRIETE 6 :

e On ne change pas la nature d’une suite si I’on change un nombre fini de termes.

e Si une suite (u,) admet une limite ¢ alors celle-ci est unique.

e Soient (uy) et (v,) deux suites numériques convergentes, de limites respectives £ et ¢’ ; a et b deux
réels.
- la suite (u, + vy,) converge vers £ + ¢'.
- la suite (u, X vy,) converge vers £ x ¢'.
- la suite (a X u, + b X v,) converge vers af + bl'.

- de plus, si £ #£ 0, (ul) converge vers %.

PROPRIETE 7 : Toute suite convergente est bornée.

Illustration et démonstration :

III Suites arithmétiques et géométriques

III.1 Suites arithmétiques

(DEFINITION 5 : Une suite (un,) est dite arithmétique s'il existe r € R tel que : )
pour tout n € N, on a : upy1 =7 + up.
[ est appelé raison de (uy,). )

PROPRIETE 8 : Soit (uy,) une suite arithmétique de raison r.
e Vn € N,u,, = ug + nr.
(n+1)

(] VnGN,Zuk:(nJrl)qurn
k=0 2

Ug + Un

r=(n+1) 5

Démonstration :
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II1.2 Suites géométriques

31

(DEFINITION 6 @ Une suite (upn) est dite géométrique s’il existe ¢ € R tel que :
pour tout n € N, on a : up4+1 = qu,.
U est appelé raison de (uy,).

PROPRIETE 9 : Soit (u,) une suite géométrique de raison q # 1.
o Vn € N, u, = uogq™.
n 1— q
e VneN Y up =ug————
k=0 l—¢q

n+1

Démonstration :

Théoreme 1 : Soit (uy,) une suite géométrique de raison q.
e Si|g| < 1 alors (uy,) converge vers 0.
e Si|g| > 1 alors (uy,) diverge.

Démonstration :
e Casou g/ >1:
Posons |g| =1+¢e ot e > 0.

e Casou ¢/ <1:

REMARQUE 2 : La suite de terme général (—1)™ est divergente.

IV  Suites adjacentes

DEFINITION 7 : Deux suites (uy,) et (v,) sont adjacentes si :
e |'une est croissante, 'autre est décroissante.
o lim ((up, —vy) =0.

Théoréme 2 : Deux suites adjacentes convergent et ont la méme limite.
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V Comportement des suites numériques

Théoréme 3 : Théoréme d’encadrement (ou des ”gendarmes”)
Soient (uy), (vn) et (wy,) trois suites numériques vérifiant :

o lim w,="{et lim v, =~¢.
n—-+oo n——+o0o

e il existe un entier ng tel que Vn > ng, up < w, < Up.
Alors (wy,) converge et lim w, =¢.
n—-+oo

Théoréme 4 : Théoreme de comparaison
Soient (uy) et (v,) deux suites numériques telles qu’il existe Ny € N tel que :
Vn > Ng, on a : Uy, < U, .

Si lim wu, =mqet lim wv, =msg alors m; < mso.
n—-+oo n—-+oo

REMARQUE 3 : SiVn > Ny, on a : u, < v, alors m; < mg. L’inégalité demeure (& priori) large.
=0.

En effet, Vn > 0, ona: —— > 0 mais lim
n+1 n—+oon + 1

Théoréme 5 : Théoreme de convergence de suites monotones
Toute suite majorée (respectivement minorée) croissante (respectivement décroissante) est convergente.
De plus, sa limite est inférieure (respectivement supérieure) a tout majorant (respectivement minorant).

REMARQUE 4 : Ce théoreme reste vrai si la suite est monotone a partir d’'un certain rang.

Exercice 4.1 FEtudier la convergence de la suite de terme général u, tel que ug =1 et

Un+1 = vV1+u,
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VI Suites arithmético-géométriques

[DEFINITION 8 : Une suite (u,) est dite arithmético-géométrique s’il existe deux réels a et b tels que]

Up41 = AU, + b.

Déterminons I'expression de u,, en fonction de n a I’aide d’une suite auxiliaire géométrique dans le cas ot a # 1.

Soit £ la solution de I’équation ¢ = af + b. Il s’agit de la limite éventuelle de la suite (uy,).

Posons désormais v,, = u,, — £. On a :

Cette suite est donc une suite géométrique de raison g = a. Ainsi :

e si|a| < 1 alors la suite (uy,) converge vers . .
—a

e SiJa] > 1 oua = —1 alors la suite (u,) diverge.
REMARQUE 5 : Sia =1 alors la suite (u,) est une suite arithmétique.

U():O

Exercice 4.2 Ezprimer, en fonction de n, le terme général de la suite (u,,) définie par 1 .
Un+1 = §’U,n + 1
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Chapitre 5

TRANSFORMEE DE LAPLACE

I Rappels et compléments

Considérons la fonction ¢ : R — C définie par ¢(t) = /. On a : ¢(t) = cos(bt) + j sin(bt).
Sa dérivée est définie sur R par ¢'(t) = —bsin(bt) + jbcos(bt) = jb[cos(bt) + j sin(bt)].
On a donc : ¢'(t) = jbo(t) pour tout réel t.

Soit f la fonction définie sur R par f(t) = e* et z = a + jb ou (a;b) € R2.
f(t) = e*ed® donc, en dérivant le produit, on obtient : f(t) = (ae®)e® + e (jbe’®) = (a + jb)et e,
Ainsi, f'(t) = ze*t et, pour z # 0, la fonction ¢ — % est une primitive de f.

DEFINITION 1 : Fonction échelon unité u (appelée également fonction de Heaviside)
La fonction échelon unité est définie sur R par :

1 si t>0
u(t)_{() si t<0

Ainsi, toute fonction étudiée dans ce chapitre telle que f(t) =0 si t < 0 sera notée ¢t — f(t) x u(t).

DEFINITION 2 : Impulsion de Dirac (ou distribution de Dirac )

L’impulsion de Dirac est une mesure qui associe la valeur 1 au singleton {0} et 0 & tout intervalle ne
contenant pas 0.

On a donc : §({0}) =1 et 6(I) = 0 pour tout I ne contenant pas 0.

0 peut étre vue comme limite de la suite des fonctions ¢, telles que :
n(z) = n pour |z < 5= et 0, (x) = 0 ailleurs.

FIGURE 5.1 — Echelon avec n =5 FIGURE 5.2 — Impulsion de Dirac
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REMARQUE 1 : Il s’avere que : [, 6, =1 et ngrfoo on =6 donc [, 6 =1.

& peut étre considérée comme une fonction qui prend une ”valeur” infinie en 0, et la valeur 0 partout ailleurs et

dont 'intégrale sur R est égale a 1.
En outre, § peut s’écrire comme la limite suivante : §(z) = lim %

Ainsi, ¢ peut étre considérée comme la ”dérivée” de la fonction échelon unité.

IT Généralités

(DEFINITION 3 @ Soit f une fonction de R dans C.
La transformée de Laplace de f est la fonction, notée £{f}, définie par :

+oo
L C{f} () = / f(t)ePt dt.

Exercice 5.1
+oo
1. Déterminer le domaine de convergence de I = / e Pt dt.
0

u(x)—u(z—e)
€

2. Calculer les transformées de Laplace des fonctions u et f.: x> ot € > 0.

3. En déduire la transformée de Laplace de §.




III. TRANSFORMEES DE SIGNAUX USUELS

REMARQUE 2 : Conditions suffisantes de I’existence de la transformée de Laplace
Soit f est continue par morceaux sur [0;a] pour tout réel a > 0.

Supposons qu’il existe deux réels M > 0 et « ainsi qu’un réel tq tels que : Vt > tg, on a : |f(t)| < Me“t.

La transformée de Laplace de f est définie pour tout p tel que : Re(p) > a.

III Transformées de signaux usuels

1. Distribution de Dirac :

2. Echelon unité :

L{5}(p) =1

1
L{u}(p) = = Vp € C tel que Re(p) > 0
p

3. Fonction "Rampe” : t — tu(t)

L{tu(t)}(p) = 1% Vp € C tel que Re(p) > 0

4. Fonction ”Puissances” : t — t"u(t)

!
L{t"u(t)} (p) = Z% Vp € C tel que Re(p) > 0

5. Fonction exponentielle : ¢ — e~ u(t)

En effet :

1
£{e™"u(t)} () = ~—— Vp € C tel que Re(a +p) > 0

p+a

6. Fonctions trigonométriques :

En effet :

L{sinwtu(t)} (p) = 5——

p°+

2 Vp € C tel que Re(p) > 0

£ {cos(wtyu(t)} (p) = 5——

P+

2 Vp € C tel que Re(p) > 0
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IV  Propriétés

Théoréme 1 : (Linéarité de la transformée de Laplace)
Soient f et g deux fonctions admettant une transformée de Laplace, A et p étant deux réels.

LAf+pg)=AL(f)+pL(g)

Cette égalité, découlant directement de la linéarité de 'intégrale, est vérifiée pour tout complexe p tel que les
intégrales considérées convergent.

Théoréme 2 : (Transformée de la dérivée)
Soit f une fonction admettant une transformée de Laplace ainsi que sa dérivée.

L(f") (p) =px L(f)(p) — £(0)

En effet :

REMARQUE 3 : Si la fonction f n’est pas définie en 0, on a :

L(f) (p) = px L{f)(p) = f(0F) ou f(07) = lim f.

COROLLAIRE 2 : (Transformée de la dérivée seconde)
Soit f une fonction telle que f, f’ et f7 admettent une transformée de Laplace.

L(f7)(p) =p* x L(f)(p) —pf(0F) — f'(0T)

En effet :

COROLLAIRE 3 : (Transformée de la dérivée n-ieme)
Soit f une fonction dont les n dérivées successives admettent une transformée de Laplace.

c{ry @) =" £} ) = p ) — o= D (07
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V Transformées de fonctions

Pour ce paragraphe on considerera une fonction f avec f(t) = 0 pour tout ¢ < 0.
Les résultats énoncés le sont sous réserve de converge de I'intégrale associée a la transformée de laplace.

V.1 Transformée de ¢ — e f(t)

Théoréme 3 : L{e *f(t)} (p) = L{f}(p+a)

En effet :

Exercice 5.2 Déterminer la transformée de Laplace du signal amorti g : t — e~ 2t sin(wt)u(t).

V.2 Transformée de ¢t — f(at) avec a > 0 (changement d’échelle)

Théoréme 4 : L{f(at)}(p) = éﬁ {f} (g)

En effet :

Exercice 5.3 Calculer la transformée de g : t — 2tu(t) en utilisant deuz méhodes.
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V.3 Transformée de t — tf(t) (produit par une rampe)

Théoréme 5 : (Résultat admis)

L)) () == (£{f}) )

—at

Exercice 5.4 Calculer la transformée de f : t — te en utilisant le résultat précédent.

V.4 Transformée de t — f(t — a)u(t — a) (décalage temporel avec a > 0)

Théoréeme 6 :

LIf(t—a)u(t —a)](p) = e""PL[f () u(t)] (p)

En effet :

REMARQUE 4 : Ainsi, un retard de a sur un signal se traduit par une multiplication par e~ de sa transformée.



VI. TRANSFORMATION DE LAPLACE INVERSE

Exercice 5.5 Calculer la transformée de Laplace de t — tu(t — 1).

V.5 Transformée de signaux périodiques

Soit f une fonction T-périodique de motif fy. On a donc :

folz) = { f(x) si x €[0;T]

0 sinon

Théoréme 7 : (Admis)

iy = S0

VI Transformation de Laplace inverse

(DEFINITION 4 @ Soit F la transformée de Laplace d’une fonction f.
On appelle transformée de Laplace inverse, ou original, de F', la fonction f.
(On note : f = L7Y(F)

Théoréme 8 : (Admis)
Si les fonctions f considérées vérifient les conditions suffisantes d’existence de la transformée de Laplace,
loriginal f d’une fonction du type F est unique.

A retenir : Si F est une fraction rationnelle, on la décomposera en éléments simples.
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Exercice 5.6 Culculer les orignauz des fonctions suivantes définies par :

1 e 2P

PO =raorn @ Y= morn

VII Théoreme de la valeur initiale ; Théoreme de la valeur finale

Théoréme 9 : Si les limites considérées existent, on a :
o liI_il_l pLA{f} (p) = f(0T) (valeur initiale)
p—+o0

o limpLl{f}(p) = lim f(z) (valeur finale)
p—0 r—+o00

REMARQUE 5 : Ces relations découlent de la relation : £ (f) (p) = p x L(f)(p) — f(0)
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VIII Applications aux équations différentielles

L’intégration d’une équation différentielle linéaire, a coefficients constants, s’effectue a l'aide de la trans-

formée de Laplace de la fagon suivante :
e FEcrire les transformées de Laplace de chaque membre de ’équation différentielle

e Exprimer la transformée de Laplace en fonction de p
e En déduire, par transformation inverse, la fonction solution de I’équation différentielle proposée

Exercice 5.7 Résoudre l’équation différentielle

2/ (t) = —ax(t)

Exercice 5.8 Résoudre, sur RY, l’équation différentielle
2t)+xt)=1

avec z(0) = 2/(0) = 0.
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Chapitre 6

SERIES NUMERIQUES

I Introduction

DEFINITION 1 : Soit (uy,)nen une suite de réels.

n
Le réel S,, défini par S,, = Y uy est appelé somme partielle de rang n.
k=0

REMARQUE 1 :
Pour une suite définie a partir d’un rang ng , les sommes partielles ne commenceront qu’au rang nyg.
On peut aussi réindexer les termes de la suite et ainsi considérer que celle-ci est définie & partir du rang 0.

DEFINITION 2 : La suite (S,,) des sommes partielles s’appelle série de terme général u,,.

On la note : Y uy voire > .
neN

Exemple 4 Ezxprimons S, en fonction de n dans les cas suivants :
e Cas ot (uy) est une suite arithmétique de raison r et de premier terme ug.

e Cas ot (uy,) est une suite géométrique de raison q # 1 et de premier terme ug.

II Nature des séries numériques

n
Pour ce paragraphe on considérera une suite (u,) et S, = > uy.
k=0

DEFINITION 3 : On dit que la série de terme général u,, converge si la suite (S,,) admet une limite finie.
Cette limite est appelée somme de la série.

+0oo
O te : = lim S,.
n note ngoun Jm S
+oo
Notation : Si lim S, = ¢ alors on notera »_ wu, = £.
n—-+0oo n=0
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46 CHAPITRE 6. SERIES NUMERIQUES

. o )3 T n
Exercice 6.1 Montrer que la série géométrique > (%) converge et calculer sa somme.

+oo
et calculer "
n=1

Exercice 6.2 Déterminer la nature de la série > #_H) m

[DEFINITION 4 : On dira que la série de terme général u,, diverge si elle ne converge pas. ]

Exemple 5 Fxemples de séries géométriques
o La série géométrique > 2™ diverge.
En effet :

o La série Y (—1)" est divergente.
En effet :

REMARQUE 2 : On ne change pas la nature d’une série en changeant un nombre fini de termes.
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PROPRIETE 10 : Condition nécessaire de convergence

Si la série Y u, converge alors lim w, = 0.
n—-+o0o

Démonstration :

REMARQUE 3 : Attention, la condition n’est pas suffisante.

Par exemple la série de terme général u,, = % est divergente alors que lim w, =0.
n—-+o0o

REMARQUE 4 : Si la suite (u,) ne tend pas vers 0 alors la série > u,, diverge.

. 1. .
Exemple 6 La série Y en diverge car le terme général tend vers 1.
Ainsi, la suite de terme général en converge mais la série associée diverge (grossiérement) !

IIT Nature de séries fondamentales

II1.1 Séries géométriques

Considérons la série de terme général u,, = ¢" :

Théoréme 1 : La série ) ¢™ est convergente si et seulement si |g| < 1.
Lorsque |g| < 1, on a I’égalité :

IT1.2 Séries de Riemann

Théoréme 2 : La série Y - converge si et seulement si o > 1.

1
i3 converge.

Exemple 7 La série > ﬁ diverge alors que la série Y

n

REMARQUE 5 : Méme si elles convergent lorsque o« > 1, en général, on ne connait pas la valeur de la somme

o 1
des séries de la forme ) ~=.
+oo 1 2
’ A 3 . —
On verra ’année prochaine que : 21 = =T
n=
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IV Structure de ’ensemble des séries convergentes

Usuellement, on dit que I’ensemble des séries convergentes est un R-espace vectoriel.

Ainsi, si Y u, et > v, sont des séries convergentes et si a et b sont des réels alors la série > (au, + bv,) est
convergente.
On pourra donc écrire : Y (au, + bvy) =ad up, + 0 vy,

REMARQUE 6 : Pour avoir ’égalité précédente, Il faut que chacune des séries converge!
> (un + vy,) peut converger sans que Y u, et > v, convergent ...

Exercice 6.3 Montrer que : si Y u, converge et Y v, diverge alors > (u, + vy,) diverge.

V  Séries a termes positifs

[DEFINITION 5: siVn €N, u, >0 alors la série > u,, est appelée série & termes positifs. ]

PROPRIETE 11 : (Condition nécessaire et suffisante de convergence)
n

Une série a termes positifs est convergente si et seulement M € R tel que, Yn € N, > uyp < M.
k=0

Démonstration :

Pour tout entier n, on a : S,,11 — Sy, = up4+1 > 0 donc la suite des sommes partielles (S,,) est croissante.

Or, une suite croissante est convergente si et seulement si elle est majorée donc Y u,, converge si et seulement
si (Sp) est majorée.

Théoreme 3 : (Comparaisons de séries a termes positifs)

Soient (uy) et (v,) deux suites & termes positifs avec u, < v, a partir d'un rang ng.
e Si la série > u, diverge alors la série v, diverge.
e Si la série > v, converge alors la série > u,, converge.

Démonstration :
Notons (Sy,) et (S],) les sommes partielles associées respectivement aux séries Y u, et > vy,.
e Si > u, diverge alors (S,,) tend vers +oo donc (S),) tend vers +o0.
11 en résulte que la série Y v, diverge.
e Si la série Y v, converge alors (S),) est majorée.
Comme u,, < vy, on en déduit que (S,,) est majorée ce qui permet de conclure que la série > u,, converge.

Exercice 6.4 Déterminer la nature de la série de terme général u, = m




V. SERIES A TERMES POSITIFS

Exercice 6.5 Déterminer la nature de la série de terme général v, = ﬁ
On pourra utiliser, aprés l'avoir démontré que, pour tout réel x strictement positif, on a : x > Inzx.

Théoréme 4 : (Equivalents)

Considérons deux séries > u, et > v, a termes positifs.

Si uy, ~ vy, alors les deux séries Y u, et > v, sont de méme nature.
—+oo

Démonstration : Ce théoreme découle du théoreme précédent.
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Exercice 6.6 Déterminer la nature de la série > ﬁ

VI Convergence absolue

(. 4 7. . . Yo 7 / B
DEFINITION 6 : La série Y u, est dite absolument convergente si la série de terme général |u,| est

convergente.
(. J

Théoreme 5 : Sila série D u, est absolument convergente alors la série > u,, est convergente et on a :

+oo +oo
D un| <D fual.
n=0 n=0

. . . , . ., —_1)"™ 08
Exercice 6.7 Déterminer la nature des séries de terme général : u, = ( n2) et v, = cos(na)

v oua € R.
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