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V.5 Applications des développements limités . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

V.5.1 Calcul de limites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
V.5.2 Etude de branche infinie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
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I Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
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Chapitre 1

DÉVELOPPEMENTS LIMITES

I Théorème de Rolle

Théorème 1 : (Théorème de Rolle)
Soit f une fonction continue sur un intervalle [a; b] et dérivable sur ]a; b[ telle que f(a) = f(b).
Il existe un réel c ∈ ]a; b[ tel que f ′(c) = 0.

Figure 1.1 – Illustration du théorème de Rolle

II Formule des accroissements finis

Théorème 2 : (TAF)
Soit f une fonction continue sur un intervalle [a; b] et dérivable sur ]a; b[.

Il existe c ∈ ]a; b[ tel que f ′(c) =
f(b)− f(a)

b− a
.

Figure 1.2 – Illustration du TAF

Démonstration : Posons g : x 7→ f(x) − f(a)− f(b)−f(a)
b−a

(x− a).

D’après l’énoncé du TAF, il existe c ∈ ]a; b[ tel que : f(b) = f(a) + f ′(c) (b− a).
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2 CHAPITRE 1. DÉVELOPPEMENTS LIMITES

III Formules de Taylor

III.1 Formule de Taylor-Lagrange

Théorème 3 : (Formule de Taylor-Lagrange)
Soit f une fonction admettant des dérivées continues jusqu’à l’ordre n sur [a; b] et dérivable à l’ordre
(n+ 1) sur ]a; b[. Il existe c ∈ ]a; b[ tel que :

f(b) = f(a) + (b− a)f ′(a) +
(b− a)2

2!
f ′′(a) + ...+

(b − a)n

n!
f (n)(a) +

(b − a)n+1

(n+ 1)!
f (n+1)(c).

Démonstration :
La formule de Taylor-Lagrange est une conséquence directe du théorème de Rolle.

Introduisons la fonction g définie par : g(x) = f(b)−
n
∑

k=0

f(k)(x)
k! (b− x)k −K(b− x)n+1 où K est choisi de sorte

que g(a) = 0. Ainsi : f(b)−
n
∑

k=0

f(k)(a)
k! (b − a)k = K(b− a)n+1.

Puisque g(a) = g(b) = 0, le théorème de Rolle permet de justifier l’existence d’un réel c ∈]a; b[ tel que : g′(c) = 0.

Or : g′(x) = − f(n+1)(x)
n! (b− x)n +K(n+ 1)(b− x)n donc − f(n+1)(c)

n! (b − c)n +K(n+ 1)(b− c)n = 0.

Comme a < c < b, on a : b − c 6= 0 donc − f(n+1)(c)
n! +K(n+ 1) = 0.

On a donc : K(n+ 1) = f(n+1)(c)
n! soit K = f(n+1)(c)

(n+1)! .

Il en résulte que : f(b)−
n
∑

k=0

f(k)(a)
k! (b− a)k = f(n+1)(c)

(n+1)! (b− a)n+1. �

Remarque 1 :

En considérant les mêmes hypothèses, avec a = 0 et b = x, il existe c compris entre 0 et x tel que :

f(x) = f(0)+xf ′(0)+ x2

2! f
′′(0)+ ...+ xn

n! f
(n)(0)+ xn+1

(n+1)!f
(n+1)(c) .

Exercice 1.1 Déterminer une approximation de la fonction sin au voisinage de 0 par un polynôme de degré
3 en utilisant la formule de Taylor-Lagrange.

On en déduit une majoration de l’erreur qui est la suivante :
∣

∣

∣
sin(x) − x+ x3

6

∣

∣

∣
≤

∣

∣

∣

x4

4!

∣

∣

∣
.

Figure 1.3 – Courbes représentatives de sin et x 7→ x− x3
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IV. EQUIVALENTS 3

III.2 Formule de Taylor-Young

On rappelle que, sous certaines hypothèses, on a :

f(x) = f(a) + (x− a)f ′(a) + (x−a)2

2! f ′′(a) + ...+ (x−a)n

n! f (n)(a) + (x−a)n+1

(n+1)! f (n+1)(c) où c est entre a et x.

Considérons le reste (x−a)n+1

(n+1)! f (n+1)(c). En divisant par (x− a)n, on obtient : x−a
(n+1)!f

(n+1)(c).

Si fn+1(c) est fini alors ce quotient tend vers 0 lorsque x tend vers a.
Plus généralement, on a le théorème ci-dessous.

Théorème 4 : (Formule de Taylor-Young)
Si la fonction f est dérivable en a jusqu’à l’ordre n alors

f(x) = f(a) + (x− a)f ′(a) + (x−a)2

2! f ′′(a) + ...+ (x−a)n

n! f (n)(a) + (x− a)nε(x) où lim
x→a

ε(x) = 0.

Remarque 2 :

Si f est une fonction dérivable n fois en 0 alors f peut s’écrire :

f(x) = f(0)+xf ′(0)+ x2

2! f
′′(0)+ ...+ xn

n! f
(n)(0)+xnε(x) avec lim

x→0
ε(x) = 0.

IV Equivalents

Définition 1 :

Soient f et g deux fonctions définies sur un voisinage V de a pouvant être un réel, +∞ ou −∞.
On dit que f est équivalente à g en a, et on note f ∼

a
g, s’il existe une fonction ε définie sur V telle que :

∀x ∈ V, f(x) = [1 + ε(x)] g(x) avec lim
x→0

ε(x) = 0.

Théorème 5 :

Soient f et g deux fonctions définies sur un voisinage V de a pouvant être un réel, +∞ ou −∞.
Si g est non nulle au voisinage de a, on a :

f ∼
a
g si et seulement si lim

x→a

f(x)

g(x)
= 1.

Exemple 1 x 7→ x2 + 6x− 7 et x 7→ x2 sont équivalentes en +∞.

Remarque 3 : En l’infini, un polynôme est équivalent à son terme de plus haut degré.

Propriété 1 :

• Si f ∼
a
g et g ∼

a
h alors f ∼

a
h.

• Si f1 ∼
a
g1 et f2 ∼

a
g2 alors f1f2 ∼

a
g1g2 et

f1

f2
∼
a

g1

g2
.

Remarque 4 : Les équivalents sont conservés par produit et quotient d’après ce qui précède mais ils ne le sont
ni par sommation, ni par composition.
Par exemple, considérons ex+1 et ex :
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Exercice 1.2 Utilisation d’équivalents

1. Déterminer un équivalent, en +∞, de f : x 7→ 2x2 − 4x+ 1

2x3 + x2 − 1
.

2. Déterminer un équivalent en 0 de g : x 7→ sin(2x) ln (1 + x) et en déduire lim
x→0

g(x)

x2
.

V Développements limités

V.1 Généralités

Définition 2 : Soit f est une fonction définie au voisinage de a.
On dit que f admet un développement limité à l’ordre n en a, noté DLn(a), s’il existe un polynôme P

de degré n (appelée partie régulière du DL) tel que :
f(x) = P (x) + (x − a)nε(x) avec lim

x→a
ε(x) = 0.

Remarque 5 : Si f est une fonction définie au voisinage de 0, f admet un DL d’ordre n en 0 s’il existe un
polynôme P de degré n tel que :

f(x) = P (x) + xnε(x) avec lim
x→0

ε(x) = 0.

Remarque 6 : (DL et Formule de Taylor-Lagrange)
La formule de Taylor-Young assure qu’une fonction f , dérivable n fois au point a, admet un DLn(a).
On a :

f(x) = f(a) + f ′(a)(x− a) + f ′′(a)
2! (x− a)2 + ...+ f(n)(a)

n! (x− a)n + (x− a)nε(x) avec lim
x→a

ε(x) = 0.

Remarque 7 : (DL d’orde 1 et tangente)
Si f est dérivable en a alors f(x) = f(a) + f ′(a)(x − a) + (x− a)ε(x).
La partie régulière P (x) = f(a) + f ′(a)(x − a) est à rapprocher de l’équation de la tangente à la courbe de f

au point d’abscisse a : y = f(a) + f ′(a)(x − a).
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V.2 Développements limités en 0

Propriété 2 : (DL au voisinage de 0)
Une fonction f , dérivable n fois en 0, admet un DLn(0). On a :

• f(x) = f(0) + f ′(0)x+ f ′′(0)
2! x2 + ...+ f(n)(0)

n! xn + xnε(x) avec lim
x→0

ε(x) = 0.

• f(x) ∼
0
f(0) + f ′(0)x+ f ′′(0)

2! x2 + ...+ f(n)(0)
n! xn.

Propriété 3 :

• Si f admet un DLn(0) (n ≥ 1) alors f est dérivable en 0.
• Si f admet un DLn(0) alors celui-ci est unique (P et ε uniques).
• P a la même parité que f .
• Si f admet un DLn(0) alors elle admet un DLp(0) pour tout p ≤ n .

Déterminons des DL(0) des fonctions : exp : x 7→ ex ; g : x 7→ (1 + x)
α
et h : x 7→ sinx.

Ces fonctions étant infiniment dérivables, on peut utiliser la formule de Taylor-Young :

f(x) = f(0) + f ′(0)x+ f ′′(0)
2! x2 + ...+ f(n)(0)

n! xn + xnε(x) avec lim
x→0

ε(x) = 0.
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Théorème 6 : (DL en 0)

(1 + x)α = 1+ αx+
α(α − 1)

2!
x2 +

α(α − 1)(α− 2)

3!
x3 + · · ·+ α(α − 1)(α− 2)...(α− n+ 1)

n!
xn + xnε(x).

ex = 1 + x+
x2

2!
+

x3

3!
+ · · ·+ xn

n!
+ xnε(x).

sin(x) = x− x3

3!
+

x5

5!
− · · ·+ (−1)n

x2n+1

(2n+ 1)!
+ x2n+1ε(x).

Exercice 1.3 Déterminer le DL3(0) des fonctions f : x 7→ 1

1 + x
et g : x 7→

√
1 + x.

Propriété 4 : (Opérations sur les DL)
Soient f et g admettant des DLn(0) de parties régulières respectives Pf et Pg.

• La somme f + g admet un DLn(0) de partie régulière Pf + Pg.
• Le produit fg admet un DLn(0). La partie régulière s’obtient en effectuant Pf × Pg et en ne
gardant que les termes de degré inférieur ou égal à n.

Exercice 1.4 Déterminer le DL2(0) de x 7→ ex ×
√
1 + x.
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Propriété 5 : (Dérivation et intégration)
• Si f admet un DLn(0) et vérifie les hypothèses du théorème de Taylor-Young, f ′ admet un d’ordre
DLn−1(0) et Pf ′ = (Pf )

′.
• Si f admet un DLn(0) , toute primitive F de f admet un DLn+1(0) et PF s’obtient en intégrant
Pf avec PF (0) = F (0).

Exercice 1.5 Déterminer le DLn(0) de x 7→ ln (1 + x) et le DL2n(0) de cos.

Théorème 7 : (DL en 0)

ln(1 + x) = x− x2

2
+

x3

3
− · · ·+ (−1)n−1x

n

n
+ xnε(x).

cos(x) = 1− x2

2!
+

x4

4!
− · · ·+ (−1)n

x2n

(2n)!
+ x2nε(x).

Propriété 6 : (DL de fonctions composées)
Si g(0) = 0 alors f ◦ g admet un DLn(0) de partie principale Pf ◦ Pg en ne gardant que les termes de
degré inférieur ou égal à n.
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Exercice 1.6 DL et composées

1. Déterminer le DL3(0) de x 7→ esin x.

2. Déterminer le DL4(0) de x 7→ − ln(cos x) et en déduire le DL3(0) de tan.
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Remarque 8 : Si une fonction f admet un DL1(0) alors elle est dérivable (il y a équivalence).
Cette implication n’est pas vraie dans le cas d’un ordre n > 1.
En effet, la fonction f définie par : f(x) = x3 sin

(

1
x2

)

pour tout x 6= 0 et f(0) = 0 admet un DL2(0) car
f(x) = x2ε(x).
f est dérivable et on a f ′(x) = 3x2 sin

(

1
x2

)

− 2 cos
(

1
x2

)

pour tout x 6= 0 et f ′(0) = 0 (cf. limite du taux
d’accroissement).
f ′ n’est pas continue en 0 donc f ′ n’est pas dérivable en 0 ce qui permet de conclure que f”(0) n’est pas défini.
Voici donc un exemple de fonction dont la dérivée seconde n’est pas définie en 0 mais qui admet un DL2(0).

Exercice 1.7 DL d’un inverse

Méthode :
Supposons que f(x) = a0 + a1x+ ...+ anx

n + xnε(x) avec a0 6= 0 au voisinage de 0.
En écrivant 1

f(x) = 1
a0

× 1

1+
(

a1
a0

x+...+an
a0

xn+xnε(x)
) = 1

a0
× 1

1+u
on peut former un développement limité à

l’ordre n de f en 0 ...

Application : Déterminer le DL4(0) de x 7→ 1

cosx
.
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V.3 Développement en un réel x0 non nul

Méthode :
Pour déterminer un développement limité en x0 d’une fonction f , on relocalise le problème en 0 via
le changement de variable x = x0 + h.
On détermine alors un développement limité en 0 de la fonction h 7→ f(x0 + h) puis on transpose ce
DL en développement limité en x0 en remplaçant h par x− x0.

Exercice 1.8 Déterminer le DL d’ordre 2 de ln en 3.

V.4 Notion de développement asymptotique

Définition 3 : Soit f une fonction définie sur un intervalle du type ]a; +∞[ et n ∈ N⋆.
On appelle développement asymptotique d’une fonction f en +∞ à la précision 1

xn , toute écriture
f(x) = a0 +

a1

x
+ a2

x2 + · · ·+ an

xn + 1
xn ε(x) avec lim

x→+∞
ε(x) = 0.

Propriété 7 : Soit f une fonction définie sur un intervalle du type ]a; +∞[.
f admet un développement asymptotique en +∞ si g(x) = f

(

1
x

)

admet un DL en 0.

Dans ce cas Pf (x) = Pg

(

1
x

)

.

Exercice 1.9 Déterminer le développement asymptotique de f en +∞ à la précision 1
x3 pour la fonction

f : x 7→
√

1 + 1
x
.
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V.5 Applications des développements limités

V.5.1 Calcul de limites

Exercice 1.10 Déterminer, si elle existe, lim
x→0

√

1 + sin(x) − 1

tan(x)
.

V.5.2 Etude de branche infinie

Exercice 1.11 Déterminer la position relative de la courbe représentative de f : x 7→
√
x2 + 4x par rapport

à son asymptote au voisinage de +∞.
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Chapitre 2

INTÉGRALES IMPROPRES

I Généralités

I.1 Fonctions localement intégrables

Définition 1 : Une fonction définie sur un intervalle I est localement intégrable si elle est intégrable
sur tout intervalle fermé borné contenu dans l’intervalle I.

On rappelle que toute fonction continue sur un fermé borné est intégrable.
On pourra donc utiliser la propriété suivante :

Propriété 1 : Toute fonction continue est localement intégrable.

I.2 Définition

Définition 2 : Soit [a; b[ un intervalle de R, a ∈ R et b ∈ R ∪ {+∞}.

On dit que

b
∫

a

f converge si lim
x→b

x
∫

a

f existe et est finie.

Sinon, on dit que

b
∫

a

f diverge.

Remarque 1 : Cette définition s’étend aux intervalles de la forme ]a; b] où a ∈ R ∪ {−∞} et b ∈ R.

Exercice 2.1 Étudier la nature des intégrales suivantes :

+∞
∫

1

1

t2
dt et

+∞
∫

1

1

t
dt.

13
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Exercice 2.2 Étudier la nature de

1
∫

0

1√
t
dt.

Théorème 1 :

Si f est une fonction continue sur R+ telle que lim
+∞

f = ℓ > 0 alors

+∞
∫

0

f (t) dt est divergente.

Démonstration :

Corollaire 1 : Soit f est une fonction continue, positive sur R+ et admettant une limite en +∞.

Si

+∞
∫

0

f (t) dt est convergente alors lim
+∞

f = 0.

Remarque 2 : Soit f est une fonction continue et positive sur R+ telle que lim
+∞

f = 0.

L’intégrale

+∞
∫

1

f(t) dt peut converger mais ce n’est pas certain ...

En effet,

+∞
∫

1

1

t2
dt est convergente alors que

+∞
∫

1

1

t
dt est divergente.

Il s’agit donc d’une condition nécessaire mais pas suffisante !
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II Propriétés

Propriété 2 :

• Soit f : I → R continue telle que

∫

I

f converge.

Pour tous a, b, c distincts éléments ou extrémités de I, on a :

∫ b

a

f(t) dt =

∫ c

a

f(t) dt+

∫ b

c

f(t) dt

avec convergence des intégrales engagées.
• Une combinaison linéaire de fonctions dont l’intégrale converge fournit une intégrale convergente.

Remarque 3 : On peut avoir deux bornes d’intégration généralisées, par exemple −∞ et +∞, il faut
impérativement couper l’intégrale et étudier séparément chaque borne.

Théorème 2 : (Intégrales de Riemann)

•
+∞
∫

1

1

tα
dt est convergente si et seulement si α > 1.

•
1

∫

0

1

tα
dt est convergente si et seulement si α < 1.

Démonstration du premier point :
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III Intégration de fonctions positives

Le comportement de fonctions positives est un cas particulier plus simple car la fonction F : x 7→
x
∫

a

f est

croissante. Dans cette partie, nous considérerons des fonctions définies sur [a; b[.
On rappelle que si F est majorée alors elle admet une limite finie.
Si F n’est pas majorée alors F diverge vers +∞.

Propriété 3 : Soit f une fonction positive définie sur [a; b[.
b

∫

a

f converge si et seulement si x 7→
x
∫

a

f est majorée sur [a; b[.

Remarque 4 : Si

b
∫

a

f diverge alors cette intégrale diverge vers +∞.

Théorème 3 : (Théorème de comparaison)
Soient f et g deux fonctions définies sur [a; b[ telles que 0 ≤ f ≤ g.

• Si

b
∫

a

g converge alors

b
∫

a

f converge.

• Si

b
∫

a

f diverge alors

b
∫

a

g diverge.

Démonstration

Exercice 2.3 Étudier la nature de l’intégrale

+∞
∫

0

e−t

1 + t2
dt.
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Théorème 4 : (Intégrales de fonctions équivalentes)
Soient f et g deux fonctions définies sur [a; b[. Si, au voisinage de b, les fonctions positives f et g sont

équivalentes alors les intégrales

b
∫

a

f et

b
∫

a

g sont de même nature.

Démonstration dans le cas où b correspond à +∞ :

Exercice 2.4 Montrer que

+∞
∫

1

3

t(t+ 1)
dt est convergente et la calculer.
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IV Intégration par parties et changement de variables

Théorème 5 : Si f et g sont deux fonctions dérivables, à dérivées continues, sur [a; b[ alors

pour tout x ∈ [a; b[,

x
∫

a

f ′ (t)g (t) dt = [f(t)g(t)]
x
a −

x
∫

a

f (t)g′ (t) dt.

Si ces deux expressions ont une limite finie en b alors

b
∫

a

f ′ (t)g (t) dt = [f(t)g(t)]
b
a −

b
∫

a

f (t)g′ (t) dt

Théorème 6 : Si ϕ est dérivable, à dérivée continue et réalise une bijection croissante de [a; b[ dans

[α;β[ et si f est continue sur [α;β[ alors

β
∫

α

f(t) dt et

b
∫

a

f (ϕ (t))ϕ′ (t) dt sont de même nature.

De plus, en cas de convergence, on a

β
∫

α

f(t) dt =

b
∫

a

f (ϕ (t))ϕ′ (t) dt

Exercice 2.5 En admettant sa convergence, calculer

+∞
∫

0

te−t dt.

Exercice 2.6 A l’aide d’un changement de variable u =
√
t, déterminer

+∞
∫

0

e−
√
t

√
t
dt.
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V Absolue convergence

Théorème 7 :

Si f une fonction définie sur I telle que

∫

I

| f | converge alors
∫

I

f converge et on a

∣

∣

∣

∣

∣

∣

∫

I

f

∣

∣

∣

∣

∣

∣

≤
∫

I

| f |

Démonstration dans le cas d’une fonction réelle :

• Cas où f est à valeurs positives : C’est immédiat compte tenu des résultats qui précèdent.

• Cas où f est à valeurs quelconques :
On pose : f+ = sup(f, 0) et f− = sup(−f, 0).
Les fonctions f+, f− sont définies sur I, positives, continues par morceaux et vérifient

f = f+ − f−

On a aussi :
0 ≤ f+ ≤ |f | et 0 ≤ f− ≤ |f |

On suppose que

∫

f converge donc, par comparaison,

∫

f+ et

∫

f− convergent.

Or f = f+ − f− donc

∫

f converge également.

En outre, −|f | ≤ f ≤ |f | donc

∣

∣

∣

∣

∣

∣

∫

I

f

∣

∣

∣

∣

∣

∣

≤
∫

I

| f |.

Exercice 2.7 Étudier la nature de

+∞
∫

1

sin t

t2
dt.
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Chapitre 3

ÉQUATIONS DIFFÉRENTIELLES

I Equations différentielles du premier ordre

I.1 Généralités

Définition 1 : Une équation différentielle est du 1er ordre si elle ne fait intervenir que la dérivée
première d’une fonction.

Définition 2 : (Equations différentielles linéaires d’ordre 1)
On appelle équation différentielle linéaire du 1er ordre sur I toute équation différentielle qui peut s’écrire
sous la forme

a(x)y′ + b(x)y = c(x) (E)

où a, b et c sont des fonctions continues sur I de R telles que ∀x ∈ I, a(x) 6= 0.
On appelle équation homogène associée (ou équation sans second membre) l’équation

a(x)y′ + b(x)y = 0 (EH).

Lorsque les fonctions a et b sont constantes, on parle d’équation à coefficients constants.

Exemple 2 Différents types d’EDL d’ordre 1
• y′ + xy = x est une équation différentielle linéaire d’ordre 1 sur R.
• y′(x) + xy = 0 est l’équation homogène associée.
• y′ + 2y = 4 est une équation différentielle linéaire d’ordre 1 sur R à coefficients constants.

Théorème 1 : Soient a, b et c des fonctions définies et continues sur I.
Si yp est une solution particulière de (E) : a(x)y′ + b(x)y = c(x) alors les solutions de (E) sont les
fonctions de la forme

x 7→ yp(x) + yH(x)

avec yH solution de l’équation homogène.
Ainsi, l’ensemble des solutions de (E) est obtenu en ajoutant à toutes les solutions de (EH) une solution
(particulière) de (E).

Démonstration :

21
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Propriété 4 : (Principe de superposition)
Considérons une équation différentielle du type : y′ + a(x)y = b1(x) + b2(x).
Si, pour i ∈ {1; 2}, yi est solution de l’équation différentielle y′ + a(x)y = bi(x) alors la fonction
y1 + y2 est solution (particulière) de y′ + a(x)y = b1(x) + b2(x).

En effet, si on a :

{

y
′

1 + ay1 = b1
y

′

2 + ay2 = b2
⇒ (y1 + y2)

′
+ a (y1 + y2) = b1 + b2.

I.2 Résolution de l’équation homogène

Théorème 2 : Les solutions de l’ED y′ = a(x)y sont de la forme y(x) = CeA(x) où A est une primitive
de a et C est une constante (réelle).

Démonstration : Considérons la fonction f : x 7→ y(x)e−A(x).

Exercice 3.1 Résoudre sur R l’équation (E) : y′ + xy = 0.

Remarque 1 : Pour résoudre une telle équation différentielle du 1er ordre, on peut utiliser la méthode de
séparation des variables.
(E) est dite à variables séparées si elle peut s’écrire sous la forme f(y)× y′ = g(x).
On note parfois : f(y) dy = g(x) dx. Si F et G sont respectivement des primitives de f et g, on obtient alors :
F (y) = G(x) +K où K est une constante (réelle).

Exercice 3.2 Résoudre, sur ]1; +∞[, l’équation différentielle xy′ lnx = (3 lnx+ 1) y.
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Remarque importante : On ne peut résoudre “ proprement ” (EH) uniquement sur les intervalles où les fonc-
tions considérées sont continues. Pour une solution “globale ”, il faut s’assurer que les solutions peuvent être
prolongées.

I.3 Recherche de solutions particulières

I.3.1 Cas particuliers

Considérons une équation différentielle (E) : y′ + a(x)y = b(x).
Dans un premier temps, on peut chercher une solution particulière de ”même nature” que le second membre.

• Si b(x) = Aeαx alors on cherche yp de la forme yp(x) = Keαx.
• Si b(x) = P (x) où P est un polynôme alors on cherche yp de la forme yp(x) = Q(x) où Q est un polynôme
(souvent de même degré).

• Si b(x) = A cos(αx) +B sin(αx) alors on cherche yp de la forme yp(x) = K cos(αx) +K ′ sin(αx).

Exercice 3.3 Résoudre l’équation différentielle y′ = ay + b où a et b sont des réels non nuls.

Les solutions de l’équation différentielle y′ = ay + b sont donc les fonctions x 7→ Ceax − b
a
.

Exercice 3.4 Résoudre l’équation différentielle y′ = −2y + 2 avec y(0) = 4.

I.3.2 Méthode de la variation de la constante

Pour déterminer une solution particulière, on peut également la rechercher par la méthode de variation de la
constante qui suit :
On rappelle que (EH) : y′ + a(x)y = 0 admet pour solution : yH : x 7→ Ce−A(x) où A est une primitive de a.
On cherche désormais yp de la forme

yp(x) = C(x)e−A(x)

avec C fonction dérivable. On a alors :
y′p + a(x)yp = C′(x)e−A(x) − a(x)C(x)e−A(x) + a(x)C(x)e−A(x) = C′(x)e−A(x).

Par suite yp est solution de (E) si et seulement si C′(x)e−A(x) = b(x).
Par détermination de primitive, on trouve C puis yp ...
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Exercice 3.5 Résoudre, sur R, l’équation différentielle y′ + y = x2 + e−x.
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II Equations différentielles du second ordre à coefficients constants

II.1 Généralités

Définition 3 : Une équation différentielle linéaire du 2nd ordre, à coefficients constants, est une équation
différentielle qui peut s’écrire sous la forme

ay” + by′ + cy = f(x) (E)

où a, b et c sont des réels (a 6= 0) et f une fonction continue sur I.
On appelle équation homogène associée (ou équation sans second membre) l’équation

ay” + by′ + cy = 0 (EH).

On appelle équation caractéristique associée l’équation

ar2 + br + c = 0 (EC).

Exemple 3 y′′ + y′ − 2y = x est une équation différentielle du second ordre à coefficients constants.

(EH) : ..............................................

(EC) : ..............................................

II.2 Résolution de l’équation homogène

Propriété 5 :

• Si y1 et y2 sont deux solutions (non proportionnelles) de (EH) alors toutes les solutions de (EH)
sont de la forme Ay1 +By2 (A et B étant des constantes réelles).

• L’ensemble des solutions de (E) est obtenu en ajoutant à toutes les solutions de (EH) une solution
(particulière) de (E).

Déterminons une condition pour que la fonction ϕ : x 7→ erx (r ∈ C) soit solution de l’équation homogène
ay” + by′ + cy = 0 :
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Théorème 3 : (Solutions de (EH) : ay” + by′ + cy = 0 dans le cadre réel)

• Si ∆ > 0 alors l’équation caractéristique admet deux solutions distinctes α et β.
Les solutions de (EH) sont de la forme

x 7→ Aeαx +Beβx

avec A et B parcourant R.
• Si ∆ = 0 alors l’équation caractéristique admet une unique solution α.
Les solutions de (EH) sont de la forme

x 7→ (Ax +B) eαx

avec A et B parcourant R.
• Si ∆ < 0 alors l’équation caractéristique admet deux solutions complexes conjuguées λ± jµ.
Les solutions de (EH) sont de la forme

x 7→ eλx (A cos (µx) +B sin (µx))

avec A et B parcourant R.

Démonstration :
Soit y une fonction deux fois dérivable sur R et z définie sur R par z(x) = y(x)e−αx soit y(x) = z(x)eαx où α

est une racine de (EC).
z est deux fois dérivable et on a : y′(x) = (z′ + αz)eαx et y”(x) = (z” + 2αz′ + α2z)eαx.
Ainsi, si y est solution de (EH) : ay” + by′ + cy = 0 alors

[

az” + 2aαz′ + aα2z + bz′ + bαz + cz
]

eαx = 0.
Il en résulte que : az” + (2aα+ b)z′ + (aα2 + bα+ c)z = 0 avec α est une racine de (EC).
On a donc : az” + (2aα+ b)z′ = 0.

• Cas où (EC) admet deux racines distinctes (∆ > 0)
Si β est l’autre solution de (EC), on a : α + β = −b

a
donc 2aα + b = 2aα − a(α + β) = a(α − β). On a

donc : az” + a(α − β)z′ = 0.
z′ est donc solution de l’ED ay′ + a(α− β)′ = 0 soit y′ + (α− β)y = 0.
D’après le premier paragraphe, on a : z′(x) = Ce−(α−β)x soit z(x) = Ae−(α−β)x +B où A = C

β−α
.

L’égalité y(x) = z(x)eαx induit y(x) = Aeαx +Beβx avec A et B réels quelconques.
• Cas où (EC) admet une unique racine (∆ = 0)
az” + a(α− β)z′ = 0 conduit à z” = 0 car α = −b

2a . Il s’avère que :
z” = 0 ssi z(x) = Ax+B avec A et B réels quelconques.
On a donc : y(x) = (Ax+B) er0x avec A et B réels quelconques.

• Cas où (EC) admet deux racines complexes conjuguées λ± jµ (∆ > 0)
D’après ce qui précède, les solutions sont les fonctions x 7→ Ce(λ+jµ)x +De(λ−jµ)x où C et D sont des
nombres complexes.
Or, Ce(λ+jµ)x + De(λ−jµ)x = eλx

(

Cejµx +De−jµx
)

et Cejµx + De−jµx = (C + D) cos(µx) + j(C −
D) sin(µx).

Comme y(0) et y
(

π
2µ

)

doivent être réels, on en déduit que C +D et j(C −D) sont réels (notés respec-

tivement A et B).
Ainsi, les solutions de (EH) sont de la forme x 7→ eλx (A cos (µx) +B sin (µx)) avec A et B parcourant
R.

Exercice 3.6 Résoudre, sur R, l’équation différentielle y” + y = 0.
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II.3 Résolution de l’équation complète

Pour chercher une solution particulière, on se contentera de chercher des solutions de même nature que le second
membre.

Exercice 3.7 Résoudre, sur R, l’équation différentielle y” + y′ − 2y = x.
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Exercice 3.8 Résoudre, sur R, l’équation différentielle y” + y′ + y = e−x.



Chapitre 4

SUITES

I Généralités

Définition 1 : On appelle suite réelle (ou numérique) toute application u d’une partie de N dans R.

Au lieu de la noter u :
N → R

n 7→ un
, on la note fréquemment (un)n∈N

voire (un).

un est appelé le terme général de la suite (ainsi que terme de rang n).
L’ensemble des suites réelles se note RN.

Remarque 1 : On appellera désormais suite (réelle), toute application de {n ∈ N, n > n0} dans R.

Définition 2 : Une suite (un) est dite :
• croissante si pour tout n > 0 , un+1 > un.
• décroissante si pour tout n > 0 , un+1 6 un.
• constante si pour tout n > 0 , un+1 = un.
• monotone si elle est croissante ou décroissante.

Définition 3 : La suite (un) est dite :
• majorée s’il existe un réel M tel que pour tout entier naturel n, un 6 M .
• minorée s’il existe un réel m tel que pour tout entier naturel n, m 6 un.
• bornée si elle est majorée et minorée.

On peut définir une suite (un) de trois manières différentes.
• Définition explicite :
Chacun des termes est exprimé en fonction de n.
Ainsi, la suite (un) définie par un = cos

(

1
n

)

est définie de façon explicite.
• Définition par récurrence :
Les premiers termes de la suite étant définis, un terme est défini en fonction des précédents. Ainsi, la
suite (un) définie par un+1 = cosun est définie par récurrence.

• Définition implicite :
On connâıt l’existence de chacun des termes de la suite sans pour autant être en mesure de les exprimer
de manière explicite. Ainsi, f étant une fonction bijective de R dans R, on peut définir la suite (un) par
f(un) = n.

II Convergence et divergence des suites

Définition 4 : Soit (un) une suite numérique et ℓ un réel. On dit que (un) converge vers ℓ si :
∀ε > 0, il existe un entier N tel que ∀n > N, |un − ℓ| ≤ ε.
On notera lim

n→∞
un = ℓ.

Si (un) n’est pas convergente, on dit qu’elle est divergente.

29
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Propriété 6 :

• On ne change pas la nature d’une suite si l’on change un nombre fini de termes.
• Si une suite (un) admet une limite ℓ alors celle-ci est unique.
• Soient (un) et (vn) deux suites numériques convergentes, de limites respectives ℓ et ℓ′ ; a et b deux
réels.
- la suite (un + vn) converge vers ℓ+ ℓ′.
- la suite (un × vn) converge vers ℓ× ℓ′.
- la suite (a× un + b× vn) converge vers aℓ+ bℓ′.

- de plus, si ℓ 6= 0,
(

1
un

)

converge vers 1
ℓ
.

Propriété 7 : Toute suite convergente est bornée.

Illustration et démonstration :

III Suites arithmétiques et géométriques

III.1 Suites arithmétiques

Définition 5 : Une suite (un) est dite arithmétique s’il existe r ∈ R tel que :
pour tout n ∈ N, on a : un+1 = r + un.
r est appelé raison de (un).

Propriété 8 : Soit (un) une suite arithmétique de raison r.
• ∀n ∈ N, un = u0 + nr.

• ∀n ∈ N,
n
∑

k=0

uk = (n+ 1)u0 +
n(n+ 1)

2
r = (n+ 1)

u0 + un

2
.

Démonstration :
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III.2 Suites géométriques

Définition 6 : Une suite (un) est dite géométrique s’il existe q ∈ R tel que :
pour tout n ∈ N, on a : un+1 = qun.
q est appelé raison de (un).

Propriété 9 : Soit (un) une suite géométrique de raison q 6= 1.
• ∀n ∈ N, un = u0q

n.

• ∀n ∈ N,
n
∑

k=0

uk = u0
1− qn+1

1− q
.

Démonstration :

Théorème 1 : Soit (un) une suite géométrique de raison q.
• Si |q| < 1 alors (un) converge vers 0.
• Si |q| > 1 alors (un) diverge.

Démonstration :
• Cas où |q| > 1 :
Posons |q| = 1 + ε où ε > 0.

• Cas où |q| < 1 :

Remarque 2 : La suite de terme général (−1)n est divergente.

IV Suites adjacentes

Définition 7 : Deux suites (un) et (vn) sont adjacentes si :
• l’une est croissante, l’autre est décroissante.
• lim ( un − vn) = 0.

Théorème 2 : Deux suites adjacentes convergent et ont la même limite.
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V Comportement des suites numériques

Théorème 3 : Théorème d’encadrement (ou des ”gendarmes”)
Soient (un), (vn) et (wn) trois suites numériques vérifiant :

• lim
n→+∞

un = ℓ et lim
n→+∞

vn = ℓ.

• il existe un entier n0 tel que ∀n ≥ n0, un ≤ wn ≤ vn.
Alors (wn) converge et lim

n→+∞
wn = ℓ.

Théorème 4 : Théorème de comparaison
Soient (un) et (vn) deux suites numériques telles qu’il existe N0 ∈ N tel que :
∀n ≥ N0, on a : un ≤ vn .
Si lim

n→+∞
un = m1 et lim

n→+∞
vn = m2 alors m1 ≤ m2.

Remarque 3 : Si ∀n ≥ N0, on a : un < vn alors m1 ≤ m2. L’inégalité demeure (à priori) large.

En effet, ∀n ≥ 0, on a :
1

n+ 1
> 0 mais lim

n→+∞

1

n+ 1
= 0.

Théorème 5 : Théorème de convergence de suites monotones
Toute suite majorée (respectivement minorée) croissante (respectivement décroissante) est convergente.
De plus, sa limite est inférieure (respectivement supérieure) à tout majorant (respectivement minorant).

Remarque 4 : Ce théorème reste vrai si la suite est monotone à partir d’un certain rang.

Exercice 4.1 Etudier la convergence de la suite de terme général un tel que u0 = 1 et

un+1 =
√
1 + un
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VI Suites arithmético-géométriques

Définition 8 : Une suite (un) est dite arithmético-géométrique s’il existe deux réels a et b tels que
un+1 = aun + b.

Déterminons l’expression de un en fonction de n à l’aide d’une suite auxiliaire géométrique dans le cas où a 6= 1.

Soit ℓ la solution de l’équation ℓ = aℓ+ b. Il s’agit de la limite éventuelle de la suite (un).

Posons désormais vn = un − ℓ. On a :

Cette suite est donc une suite géométrique de raison q = a. Ainsi :

• si |a| < 1 alors la suite (un) converge vers
b

1− a
.

• Si |a| > 1 ou a = −1 alors la suite (un) diverge.

Remarque 5 : Si a =1 alors la suite (un) est une suite arithmétique.

Exercice 4.2 Exprimer, en fonction de n, le terme général de la suite (un) définie par

{

u0 = 0
un+1 =

1
2un + 1

.
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Chapitre 5

TRANSFORMÉE DE LAPLACE

I Rappels et compléments

Considérons la fonction ϕ : R → C définie par ϕ(t) = ejbt. On a : ϕ(t) = cos(bt) + j sin(bt).
Sa dérivée est définie sur R par ϕ′(t) = −b sin(bt) + jb cos(bt) = jb [cos(bt) + j sin(bt)].
On a donc : ϕ′(t) = jbϕ(t) pour tout réel t.

Soit f la fonction définie sur R par f(t) = ezt et z = a+ jb où (a; b) ∈ R2.
f(t) = eatejbt donc, en dérivant le produit, on obtient : f ′(t) = (aeat)ejbt + eat(jbejbt) = (a+ jb)eatejbt.

Ainsi, f ′(t) = zezt et, pour z 6= 0, la fonction t → ezt

z
est une primitive de f .

Définition 1 : Fonction échelon unité u (appelée également fonction de Heaviside)
La fonction échelon unité est définie sur R par :

u(t) =

{

1 si t ≥ 0
0 si t < 0

Ainsi, toute fonction étudiée dans ce chapitre telle que f(t) = 0 si t < 0 sera notée t 7→ f(t)× u(t).

Définition 2 : Impulsion de Dirac (ou distribution de Dirac )
L’impulsion de Dirac est une mesure qui associe la valeur 1 au singleton {0} et 0 à tout intervalle ne
contenant pas 0.
On a donc : δ({0}) = 1 et δ(I) = 0 pour tout I ne contenant pas 0.

δ peut être vue comme limite de la suite des fonctions δn telles que :
δn(x) = n pour |x| < 1

2n et δn(x) = 0 ailleurs.

Figure 5.1 – Echelon avec n = 5 Figure 5.2 – Impulsion de Dirac

35
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Remarque 1 : Il s’avère que :
∫

R
δn = 1 et lim

n→+∞
δn = δ donc

∫

R
δ = 1.

δ peut être considérée comme une fonction qui prend une ”valeur” infinie en 0, et la valeur 0 partout ailleurs et
dont l’intégrale sur R est égale à 1.

En outre, δ peut s’écrire comme la limite suivante : δ(x) = lim
ε→0

u(x)−u(x−ε)
ε

.

Ainsi, δ peut être considérée comme la ”dérivée” de la fonction échelon unité.

II Généralités

Définition 3 : Soit f une fonction de R dans C.
La transformée de Laplace de f est la fonction, notée L{f}, définie par :

L{f}(p) =
∫ +∞

0

f(t)e−pt dt.

Exercice 5.1

1. Déterminer le domaine de convergence de I =

∫ +∞

0

e−pt dt.

2. Calculer les transformées de Laplace des fonctions u et fε : x 7→ u(x)−u(x−ε)
ε

où ε > 0.

3. En déduire la transformée de Laplace de δ.
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Remarque 2 : Conditions suffisantes de l’existence de la transformée de Laplace
Soit f est continue par morceaux sur [0; a] pour tout réel a > 0.
Supposons qu’il existe deux réels M > 0 et α ainsi qu’un réel t0 tels que : ∀t ≥ t0, on a : |f(t)| < Meαt.
La transformée de Laplace de f est définie pour tout p tel que : Re(p) > α.

III Transformées de signaux usuels

1. Distribution de Dirac :

L{δ}(p) = 1

2. Echelon unité :

L{u}(p) = 1

p
∀p ∈ C tel que Re(p) > 0

3. Fonction ”Rampe” : t 7→ tu(t)

L{tu(t)}(p) = 1

p2
∀p ∈ C tel que Re(p) > 0

4. Fonction ”Puissances” : t 7→ tnu(t)

L{tnu(t)} (p) = n!

pn+1
∀p ∈ C tel que Re(p) > 0

5. Fonction exponentielle : t 7→ e−atu(t)

L{e−atu(t)} (p) = 1

p+ a
∀p ∈ C tel que Re(a+ p) > 0

En effet :

6. Fonctions trigonométriques :

L{sin(ωt)u(t)} (p) = ω

p2 + ω2
∀p ∈ C tel que Re(p) > 0

L{cos(ωt)u(t)} (p) = p

p2 + ω2
∀p ∈ C tel que Re(p) > 0

En effet :
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IV Propriétés

Théorème 1 : (Linéarité de la transformée de Laplace)
Soient f et g deux fonctions admettant une transformée de Laplace, λ et µ étant deux réels.

L (λ f + µ g) = λL(f) + µL( g)

Cette égalité, découlant directement de la linéarité de l’intégrale, est vérifiée pour tout complexe p tel que les
intégrales considérées convergent.

Théorème 2 : (Transformée de la dérivée)
Soit f une fonction admettant une transformée de Laplace ainsi que sa dérivée.

L (f ′) (p) = p× L(f)(p) − f(0)

En effet :

Remarque 3 : Si la fonction f n’est pas définie en 0, on a :

L (f ′) (p) = p× L(f)(p)− f(0+) où f(0+) = lim
0+

f .

Corollaire 2 : (Transformée de la dérivée seconde)
Soit f une fonction telle que f , f ′ et f” admettent une transformée de Laplace.

L (f”) (p) = p2 × L(f)(p)− pf(0+)− f ′(0+)

En effet :

Corollaire 3 : (Transformée de la dérivée n-ième)
Soit f une fonction dont les n dérivées successives admettent une transformée de Laplace.

L
{

f (n)
}

(p) = pn · L {f} (p)− pn−1f(0+)− · · · − f (n−1)(0+)
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V Transformées de fonctions

Pour ce paragraphe on considèrera une fonction f avec f(t) = 0 pour tout t < 0.
Les résultats énoncés le sont sous réserve de converge de l’intégrale associée à la transformée de laplace.

V.1 Transformée de t 7→ e−atf(t)

Théorème 3 : L{e−atf(t)} (p) = L{f} (p+ a)

En effet :

Exercice 5.2 Déterminer la transformée de Laplace du signal amorti g : t 7→ e−2t sin(ωt)u(t).

V.2 Transformée de t 7→ f(at) avec a > 0 (changement d’échelle)

Théorème 4 : L{f(at)} (p) = 1

a
L{f}

(p

a

)

En effet :

Exercice 5.3 Calculer la transformée de g : t 7→ 2tu(t) en utilisant deux méhodes.
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V.3 Transformée de t 7→ tf(t) (produit par une rampe)

Théorème 5 : (Résultat admis)

L{t f(t)} (p) = − (L{f})′ (p)

Exercice 5.4 Calculer la transformée de f : t 7→ te−at en utilisant le résultat précédent.

V.4 Transformée de t 7→ f(t− a)u(t− a) (décalage temporel avec a > 0)

Théorème 6 :

L [f(t− a)u(t− a)] (p) = e−apL [f (t)u (t)] (p)

En effet :

Remarque 4 : Ainsi, un retard de a sur un signal se traduit par une multiplication par e−ap de sa transformée.
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Exercice 5.5 Calculer la transformée de Laplace de t 7→ tu(t− 1).

V.5 Transformée de signaux périodiques

Soit f une fonction T -périodique de motif f0. On a donc :

f0(x) =

{

f(x) si x ∈ [0;T [
0 sinon

Théorème 7 : (Admis)

L{f} (p) = L{f0} (p)
1− e−pT

VI Transformation de Laplace inverse

Définition 4 : Soit F la transformée de Laplace d’une fonction f .
On appelle transformée de Laplace inverse, ou original, de F , la fonction f .
On note : f = L−1(F )

Théorème 8 : (Admis)
Si les fonctions f considérées vérifient les conditions suffisantes d’existence de la transformée de Laplace,
l’original f d’une fonction du type F est unique.

A retenir : Si F est une fraction rationnelle, on la décomposera en éléments simples.
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Exercice 5.6 Calculer les orignaux des fonctions suivantes définies par :

F (p) =
1

(p+ 3) (p+ 1)
et G(p) =

e−2p

p2 (p+ 1)
.

VII Théorème de la valeur initiale ; Théorème de la valeur finale

Théorème 9 : Si les limites considérées existent, on a :
• lim

p→+∞
pL{f} (p) = f(0+) (valeur initiale)

• lim
p→0

pL{f} (p) = lim
x→+∞

f(x) (valeur finale)

Remarque 5 : Ces relations découlent de la relation : L (f ′) (p) = p× L(f)(p) − f(0)
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VIII Applications aux équations différentielles

L’intégration d’une équation différentielle linéaire, à coefficients constants, s’effectue à l’aide de la trans-
formée de Laplace de la façon suivante :

• Ecrire les transformées de Laplace de chaque membre de l’équation différentielle
• Exprimer la transformée de Laplace en fonction de p

• En déduire, par transformation inverse, la fonction solution de l’équation différentielle proposée

Exercice 5.7 Résoudre l’équation différentielle

x′(t) = −ax(t)

Exercice 5.8 Résoudre, sur R+, l’équation différentielle

x”(t) + x(t) = 1

avec x(0) = x′(0) = 0.
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Chapitre 6

SÉRIES NUMÉRIQUES

I Introduction

Définition 1 : Soit (un)n∈N une suite de réels.

Le réel Sn défini par Sn =
n
∑

k=0

uk est appelé somme partielle de rang n.

Remarque 1 :

Pour une suite définie à partir d’un rang n0 , les sommes partielles ne commenceront qu’au rang n0.
On peut aussi réindexer les termes de la suite et ainsi considérer que celle-ci est définie à partir du rang 0.

Définition 2 : La suite (Sn) des sommes partielles s’appelle série de terme général un.
On la note :

∑

un voire
∑

n∈N

un.

Exemple 4 Exprimons Sn en fonction de n dans les cas suivants :
• Cas où (un) est une suite arithmétique de raison r et de premier terme u0.

• Cas où (un) est une suite géométrique de raison q 6= 1 et de premier terme u0.

II Nature des séries numériques

Pour ce paragraphe on considérera une suite (un) et Sn =
n
∑

k=0

uk.

Définition 3 : On dit que la série de terme général un converge si la suite (Sn) admet une limite finie.
Cette limite est appelée somme de la série.

On note :
+∞
∑

n=0
un = lim

n→+∞
Sn.

Notation : Si lim
n→+∞

Sn = ℓ alors on notera
+∞
∑

n=0
un = ℓ.

45
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Exercice 6.1 Montrer que la série géométrique
∑

(

1
2

)n
converge et calculer sa somme.

Exercice 6.2 Déterminer la nature de la série
∑ 1

n(n+1) et calculer
+∞
∑

n=1

1
n(n+1) .

Définition 4 : On dira que la série de terme général un diverge si elle ne converge pas.

Exemple 5 Exemples de séries géométriques
• La série géométrique

∑

2n diverge.
En effet :

• La série
∑

(−1)n est divergente.
En effet :

Remarque 2 : On ne change pas la nature d’une série en changeant un nombre fini de termes.
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Propriété 10 : Condition nécessaire de convergence
Si la série

∑

un converge alors lim
n→+∞

un = 0.

Démonstration :

Remarque 3 : Attention, la condition n’est pas suffisante.
Par exemple la série de terme général un = 1

n
est divergente alors que lim

n→+∞
un = 0.

Remarque 4 : Si la suite (un) ne tend pas vers 0 alors la série
∑

un diverge.

Exemple 6 La série
∑

e
1
n diverge car le terme général tend vers 1.

Ainsi, la suite de terme général e
1
n converge mais la série associée diverge (grossièrement) !

III Nature de séries fondamentales

III.1 Séries géométriques

Considérons la série de terme général un = qn :

Théorème 1 : La série
∑

qn est convergente si et seulement si |q| < 1.
Lorsque |q| < 1, on a l’égalité :

+∞
∑

n=0

qn =
1

1− q
.

III.2 Séries de Riemann

Théorème 2 : La série
∑ 1

nα converge si et seulement si α > 1.

Exemple 7 La série
∑ 1√

n
diverge alors que la série

∑ 1
n1,2 converge.

Remarque 5 : Même si elles convergent lorsque α > 1, en général, on ne connâıt pas la valeur de la somme
des séries de la forme

∑

1
nα .

On verra l’année prochaine que :
+∞
∑

n=1

1
n2 = π2

6 .
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IV Structure de l’ensemble des séries convergentes

Usuellement, on dit que l’ensemble des séries convergentes est un R-espace vectoriel.

Ainsi, si
∑

un et
∑

vn sont des séries convergentes et si a et b sont des réels alors la série
∑

(aun + bvn) est
convergente.
On pourra donc écrire :

∑

(aun + bvn) = a
∑

un + b
∑

vn.

Remarque 6 : Pour avoir l’égalité précédente, Il faut que chacune des séries converge !
∑

(un + vn) peut converger sans que
∑

un et
∑

vn convergent ...

Exercice 6.3 Montrer que : si
∑

un converge et
∑

vn diverge alors
∑

(un + vn) diverge.

V Séries à termes positifs

Définition 5 : si ∀n ∈ N, un ≥ 0 alors la série
∑

un est appelée série à termes positifs.

Propriété 11 : (Condition nécessaire et suffisante de convergence)

Une série à termes positifs est convergente si et seulement ∃M ∈ R tel que, ∀n ∈ N,
n
∑

k=0

uk ≤ M .

Démonstration :
Pour tout entier n, on a : Sn+1 − Sn = un+1 ≥ 0 donc la suite des sommes partielles (Sn) est croissante.
Or, une suite croissante est convergente si et seulement si elle est majorée donc

∑

un converge si et seulement
si (Sn) est majorée.

Théorème 3 : (Comparaisons de séries à termes positifs)
Soient (un) et (vn) deux suites à termes positifs avec un ≤ vn à partir d’un rang n0.

• Si la série
∑

un diverge alors la série
∑

vn diverge.
• Si la série

∑

vn converge alors la série
∑

un converge.

Démonstration :
Notons (Sn) et (S

′
n) les sommes partielles associées respectivement aux séries

∑

un et
∑

vn.
• Si

∑

un diverge alors (Sn) tend vers +∞ donc (S′
n) tend vers +∞.

Il en résulte que la série
∑

vn diverge.
• Si la série

∑

vn converge alors (S′
n) est majorée.

Comme un ≤ vn, on en déduit que (Sn) est majorée ce qui permet de conclure que la série
∑

un converge.

Exercice 6.4 Déterminer la nature de la série de terme général un = 1
n(n+2) .
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Exercice 6.5 Déterminer la nature de la série de terme général vn = 1
ln(n) .

On pourra utiliser, après l’avoir démontré que, pour tout réel x strictement positif, on a : x > lnx.

Théorème 4 : (Equivalents)
Considérons deux séries

∑

un et
∑

vn à termes positifs.
Si un ∼

+∞
vn alors les deux séries

∑

un et
∑

vn sont de même nature.

Démonstration : Ce théorème découle du théorème précédent.
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Exercice 6.6 Déterminer la nature de la série
∑ 1

n
√
n2−1

.

VI Convergence absolue

Définition 6 : La série
∑

un est dite absolument convergente si la série de terme général |un| est
convergente.

Théorème 5 : Si la série
∑

un est absolument convergente alors la série
∑

un est convergente et on a :

∣

∣

∣

∣

∣

+∞
∑

n=0

un

∣

∣

∣

∣

∣

≤
+∞
∑

n=0

|un|.

Exercice 6.7 Déterminer la nature des séries de terme général : un = (−1)n

n2 et vn = cos(na)
n2+1 où a ∈ R.
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