

Année universitaire 2020-2021

COURS DE MATHÉMATIQUES

Modules M 1201 & M 1302

SEMESTRE 1

Auteur : Florent ARNAL

Adresse électronique : florent.arnal@u-bordeaux.fr

Site: http://flarnal.e-monsite.com

Table des matières

1			S SUR LES FONCTIONS			1
	Ι	Trigonomé				
			néralités sur les fonctions circulaires			
		I.2 For	rmules de Trigonométrie			
	II	Périodicité				
	III	Propriétés	graphiques des fonctions	 	 	 6
		III.1 Do:	$ maine \ de \ d\acute{e} finition \ \dots $	 	 	 6
		III.2 Gra	aphe d'une fonction	 	 	 7
		III.3 Par	rité d'une fonction	 	 	 8
	IV	Translation	ns de courbes	 	 	 9
	V	Fonctions	usuelles	 	 	 10
		V.1 For	nctions puissances et racines n -ième			10
			fonction logarithme népérien			
			actions exponentielles			
2			S SUR LES NOMBRES COMPLEXES			13
	I		ébrique			
			néralités			
			mbre complexe conjugué			
	II		complexes et géométrie			14
	III		gonométrique			14
			dule d'un nombre complexe			14
			guments d'un nombre complexe non nul			15
	IV	-	onentielle			16
			$\operatorname{n\'eralit\'es}$			16
		IV.2 Ap	plications			17
		IV.2.1				17
		IV.2.2				18
	V	Equations		 	 	 18
		V.1 Rac	${ m cines\ carr\'es}$	 	 	 18
		V.2 Eq	quations du second degré du type $az^2 + bz + c = 0 (a \neq 0)$	 	 	 18
		V.3 Rac	cines n -ième d'un nombre complexe	 	 	 19
		V.3.1	Racines n -ième de l'unité $\dots \dots \dots \dots \dots \dots$	 	 	 19
		V.3.2	Racines n -ième d'un nombre complexe quel conque	 	 	 19
3	T TA	AITES DE E	CONCTIONS			21
J	I		r les limites à droite et à gauche			
	II		s fonctions usuelles			
	III		s généraux sur les limites			$\frac{21}{22}$
	111		nite d'une somme de deux fonctions			22
			nite d'un produit de deux fonctions			
			*			22
			nite de l'inverse d'une fonction			22
			nite d'un quotient de deux fonctions			22
	TT 7		nite de la composée de deux fonctions			23
	IV		s de comparaisons			23
	V		ment asymptotique			24
	VI	Croissance	es comparées des fonctions usuelles	 	 	 24
4	DÉ	RIVATION	ET CONTINUITÉ			27
	I			 	 	 27
			néralités			27

TABLE DES MATIÈRES 3

		I.2 Dérivéees des fonctions usuelles		2
		I.3 Dérivées et limites usuelles en 0		2
		I.4 Opérations sur les fonctions dérivées		2
	II	Applications de la dérivation		
		II.1 Sens de variations d'une fonction		
		II.2 Extremum d'une fonction		
		II.3 Plan d'étude d'une fonction		
	III	Continuité		
	111	III.1 Continuité en un point		
		III.2 Fonction continues usuelles		
		· · · · · · · · · · · · · · · · · · ·		
	TX 7	III.4 Prolongement par continuité		
	IV	Propriétés des fonctions continues		
		IV.1 Théorème des valeurs intermédiaires		3
5	ΔP	PLICATIONS DES NOMBRES COMPLEXES		3
•	I	Factorisation de polynômes à coefficients réels		
	-	I.1 Division euclidienne		
		I.2 Racine, multiplicité		
	П	Application aux circuits fonctionnant en régime permanentsinusoïdal		
	11	II.1 Généralités		
		II.2 Impédance complexe		
		II.2.1 Cas d'une résistance		
		II.2.3 Cas d'un condensateur	• •	3
6	FO	ICTIONS RECIPROQUES		39
	I	Généralités		3
	II	Fonctions réciproques des fonctions trigonométriques		4
		II.1 Fonction réciproque de la fonction tan : arctan		
		II.2 Fonction réciproque de la fonction cos : arccos		
		II.3 Fonction réciproque de la fonction sin : arcsin		
7	DÉ	COMPOSITION EN ÉLÉMENTS SIMPLES		4
	Ι	Généralités		
	II	Décomposition en éléments simples		4
8	CA	CUL INTÉGRAL		49
O	I	Primitives (Rappels)		
	II	Intégrales		
	11	II.1 Généralités		
	TTT	II.2 Utilisation de l'intégrale en GEII : Valeurs moyenne et efficace		
	III	Calculs d'intégrales		
		III.1 Intégration par parties		
		III.2 Changement de variable		
		III.3 Calcul de primitives		5
		III.3.1 Recherche des primitives de $x \mapsto \frac{1}{(x^2+1)^n} \dots \dots$		5
		$(x^2+1)^n$ III.3.2 Cas de certaines fonctions trigonométriques (voir TD)		5
		TITIOTE CON GO COLUMNICO TONICUTONO ULIGUNICONIQUED (VOIL TD/		

Chapitre 1

GENERALITES SUR LES FONCTIONS

I Trigonométrie

I.1 Généralités sur les fonctions circulaires

Dans tout ce chapitre, le plan sera rapporté à un repère orthonormal direct d'origine $(O; \overrightarrow{u}, \overrightarrow{v})$.

DÉFINITION 1 :

On appelle cercle trigonométrique le cercle de centre O, de rayon 1, orienté dans le sens direct. Soit M un point sur ce cercle tel que $(\overrightarrow{u};\overrightarrow{OM})=x$.

 $\cos(x)$ correspond à l'abscisse de M et $\sin(x)$ correspond à l'ordonnée de M.

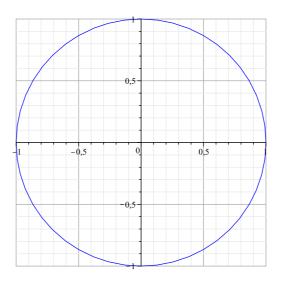


FIGURE 1.1 – Représentation du cercle trigonométrique

Propriété 1 :

- $\forall x \in \mathbb{R}$, on $a: -1 \leqslant \cos(x) \leqslant 1$ et $-1 \leqslant \sin(x) \leqslant 1$.
- $\forall x \in \mathbb{R}$, on a : $\cos^2(x) + \sin^2(x) = 1$.
- Les fonctions sin et cos sont définies sur \mathbb{R} , à valeurs dans [-1;1].
- Les fonctions sin et cos sont 2π -périodiques.
- sin est impaire et cos est paire car, pour tout x réel, on a : $\cos(-x) = \cdots$ et $\sin(-x) = \cdots$.

En outre, on a les formules suivantes : $\cos(\pi + x) = -\cos(x)$ et $\sin(\pi + x) = -\sin(x)$.

On peut donc se restreindre à l'intervalle $\left[0;\frac{\pi}{2}\right]$ pour les étudier.

PROPRIÉTÉ 2 : (Variations des fonctions sin et cos) Sur l'intervalle $\left[0;\frac{\pi}{2}\right]$, la fonction sin est croissante et la fonction cos est décroissante.

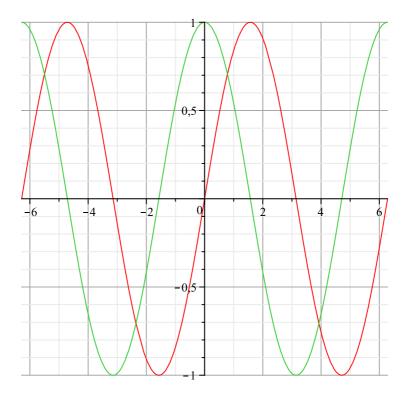


FIGURE 1.2 – Représentation graphique des fonctions sin et cos

La formule $\cos(x) = \sin\left(x + \frac{\pi}{2}\right)$ montre que la courbe d'équation $y = \cos(x)$ se déduit de la courbe d'équation $y = \sin(x)$ par la translation de vecteur $-\frac{\pi}{2}\overrightarrow{i}$.

```
DÉFINITION 2 : (La fonction Tangente)
Cette fonction, notée tan, est définie par \tan(x) = \frac{\sin(x)}{\cos(x)} pour tout réel x tel que x \neq \frac{\pi}{2}[\pi].
```

Propriété 3 : La fonction tan est π -périodique et impaire.

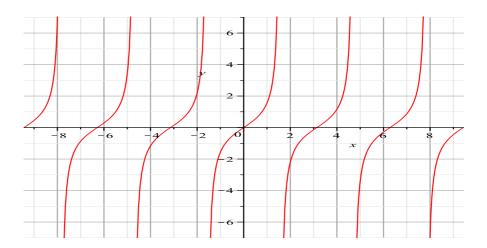


FIGURE 1.3 – Représentation de la fonction tan

I.2 Formules de Trigonométrie

Propriété 4 : (Relations liés au cercle trigonométrique)

$$\sin(-\theta) = -\sin\theta \qquad \sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta \qquad \sin(\pi - \theta) = \sin\theta$$
$$\cos(-\theta) = \cos\theta \qquad \cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta \qquad \cos(\pi - \theta) = -\cos\theta$$
$$\tan(-\theta) = -\tan\theta \qquad \tan\left(\frac{\pi}{2} - \theta\right) = \frac{1}{\tan\theta} \qquad \tan(\pi - \theta) = -\tan\theta$$

Propriété 5 : (Valeurs remarquables)

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin \theta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\tan \theta$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	non défini

Propriété 6: (Formules d'addition et duplication)

- $\cos(a+b) = \cos a \cos b \sin a \sin b$.
- cos(a b) = cos a cos b + sin a sin b.
- $\sin(a+b) = \sin a \cos b + \cos a \sin b$.
- $\sin(a-b) = \sin a \cos b \cos a \sin b$.
- $\tan(a+b) = \frac{\tan a + \tan b}{1 \tan a \tan b}$.

Méthode pour retrouver ces formules en utilisant les nombres complexes. Considérons, par exemple, $\cos(a+b)$.

On a donc : $\cos(a+b) = \cos a \cos b - \sin a \sin b$.

Propriété 7 : (Formules de duplication)

- $\cos(2a) = \cos^2 a \sin^2 a = 2\cos^2 a 1 = 1 2\sin^2 a$.
- $\sin(2a) = 2\sin a \cos a$.

En effet :

Propriété 8 : (Formules de réduction du carré)

- $\bullet \cos^2 x = \frac{1 + \cos(2x)}{2}.$
- $\bullet \sin^2 x = \frac{1 \cos(2x)}{2}.$

Propriété 9 : (Formules de développement)

- cos(a+b) + cos(a-b) = 2 cos a cos b.
- $\bullet \cos(a+b) \cos(a-b) = -2\sin a \sin b.$
- $\sin(a+b) + \sin(a-b) = 2\sin a \cos b$.
- $\bullet \sin(a+b) \sin(a-b) = 2\cos a \sin b.$

Méthode pour retrouver, par exemple, $\cos(a+b) + \cos(a-b) = 2\cos a\cos b$.

On déduit aisément la propriété suivante :

COROLLAIRE 1 : (Formules de factorisation)

- $\cos a \cos b = \frac{\cos(a+b) + \cos(a-b)}{2}$.
- $\sin a \sin b = \frac{\cos(a-b) \cos(a+b)}{2}$.
- $\sin a \cos b = \frac{\sin(a+b) + \sin(a-b)}{2}$.
- $\cos a \sin b = \frac{\sin(a+b) \sin(a-b)}{2}$.

Propriété 10 : (Résolution d'équations trigonométriques)

- $\cos a = \cos b \Leftrightarrow b = a [2\pi]$ ou $b = -a [2\pi]$.
- $\sin a = \sin b \Leftrightarrow b = a [2\pi]$ ou $b = \pi a [2\pi]$.

Exercice 1.1 Résoudre, dans \mathbb{R} , l'équation

$$\cos(3x) = 0, 5$$

Une conséquence intéressante de ces égalités est qu'elles permettent de ramener la combinaison linéaire d'un sinus et d'un cosinus à un sinus.

5

Théorème 1 : (Transformation d'une expression de la forme $a\cos(\omega t) + b\sin(\omega t)$) $a\cos(\omega t) + b\sin(\omega t) = A\sin(\omega t + \varphi)$

avec
$$A = \sqrt{a^2 + b^2}$$
 et
$$\left\{ \begin{array}{ll} a = A \sin \varphi \\ b = A \cos \varphi \end{array} \right.$$

Démonstration :

Exercice 1.2 Exprimer $\cos(2t) + \sin(2t)$ sous la forme $A\sin(\omega t + \varphi)$.

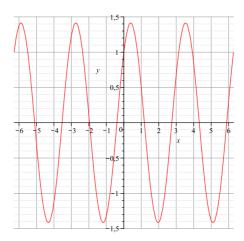


FIGURE 1.4 – Représentation graphique de la fonction $t\mapsto \cos(2t)+\sin(2t)$

Périodicité TT

DÉFINITION 3: (Périodicité d'une fonction)

Une fonction f définie sur \mathbb{R} est dite T-périodique si T est le plus petit réel positif tel que :

 $\forall x \in \mathbb{R}, f(x+T) = f(x).$

Exercice 1.3 Montrer que la fonction $f: t \mapsto \cos(\omega t)$ est périodique de période $T = \frac{2\pi}{\omega}$ où $\omega > 0$.

Propriété 11 : (Période d'un signal sinusoïdal)

Soient A, ω et ϕ des réels non nuls.

Les fonctions $t \mapsto A\cos(\omega t + \phi)$ et $t \mapsto A\sin(\omega t + \phi)$ sont périodiques de période

$$T = \frac{2\pi}{\omega}$$

Remarque 1:

- $T = \frac{2\pi}{\omega}$ induit que $\omega T = 2\pi$ et $\omega = \frac{2\pi}{T}$. Dans ce cas, on peut restreindre l'étude de la fonction f à tout intervalle I de longueur T.
- ullet La courbe représentative de f sera obtenue à partir du graphe obtenu sur I par des translations de vecteurs kT i avec $k \in \mathbb{Z}$.
- Une fonction peut être périodique sans être une fonction trigonométrique. En effet, la fonction $f: x \mapsto (-1)^{\lfloor x \rfloor} \cdot [x - \lfloor x \rfloor]$ est périodique de période 2.

IIIPropriétés graphiques des fonctions

Domaine de définition III.1

Définition 4 : On appelle fonction numérique d'une variable réelle toute application f dont les ensembles de départ et d'arrivée sont des ensembles de réels.

 $D \to \mathbb{R}$ On note : f : $x \mapsto f(x)$

L'ensemble D est appelé l'ensemble de définition de f.

Remarque 2:

- Les intervalles de \mathbb{R} sont des sous-ensembles particuliers de \mathbb{R} .
- Dans le cas où la fonction n'est connue que par la donnée de son expression f(x), on convient que le domaine de définition est l'ensemble de tous les réels x tels que f(x) existe.

Exercice 1.4 Déterminer l'ensemble de définition de la fonction $f: x \mapsto \frac{3}{\sqrt{x^2 - 4}}$.

III.2 Graphe d'une fonction

On se place dans un repére <u>orthonormal</u> du plan $(O; \vec{i}, \vec{j})$.

DÉFINITION 5 : L'ensemble des points M de coordonnées M(x; f(x)) est appelé **courbe représentative** de f ou **graphe** de f.

Remarque 3 : La courbe représentative de f a pour équation y = f(x).

Exercice 1.5 On considère la fonction partie entière, notée $\lfloor \rfloor$, définie par : $\forall x \in \mathbb{R}$ tel que $k \leq x < k+1$ où $k \in \mathbb{Z}$, $\lfloor x \rfloor = k$.

 $\lfloor x \rfloor$ correspond donc au plus grand entier relatif inférieur ou égal à x.

- 1. Représenter graphiquement cette fonction.
- 2. Exprimer, pour tout x réel, $\lfloor x+1 \rfloor$ en fonction de $\lfloor x \rfloor$.

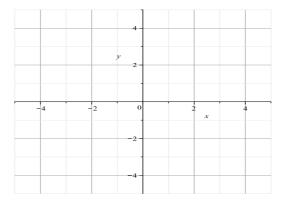


FIGURE 1.5 – Représentation graphique de la fonction Partie Entière

III.3 Parité d'une fonction

DÉFINITION 6 : (Ensemble symétrique par rapport à 0) Un ensemble D inclus dans \mathbb{R} est symétrique par rapport à 0 si $\forall x \in D, -x \in D$.

DÉFINITION 7: (Fonction paire)

Soit f une fonction dont le domaine de définition est centré en 0.

La fonction f est paire si $\forall x \in D$, on a : f(-x) = f(x).

Exercice 1.6 Montrer que la fonction $f: x \mapsto \frac{\sin x}{x}$ est paire.

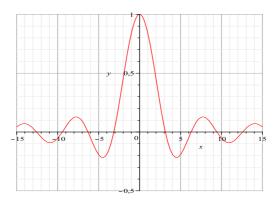


Figure 1.6 – Représentation graphique de la fonction f

REMARQUE 4 : Dans un repère orthogonal, la courbe représentative d'une fonction paire est symétrique par rapport à l'axe des ordonnées.

DÉFINITION 8 : (Fonction impaire)

Soit f une fonction dont le domaine de définition est centré en 0.

La fonction f est impaire si $\forall x \in D$, on a : f(-x) = -f(x).

Remarque 5 :

- ullet La courbe représentative d'une fonction impaire est symétrique par rapport à l'origine O du repère.
- Si f est une fonction impaire définie en 0 alors f(0) = 0. En effet :

• Pour étudier une fonction paire ou impaire, on peut restreindre l'intervalle d'étude (en considérant, par exemple, \mathbb{R}^+ au lieu de \mathbb{R}).

IV Translations de courbes

Nous allons dans cette partie considérer les fonctions du type $x \mapsto f(x) + \lambda$ et $x \mapsto f(x + \lambda)$.

Exercice 1.7 On considère la fonction f dont le graphe est donné ci-dessous, défini par

$$f(x) = x^3 - 3x^2$$

 $Tracer\ la\ représentation\ graphique\ des\ fonctions\ g\ et\ h\ définies\ par$:

$$g: x \mapsto f(x) + 2$$

$$h: x \mapsto f(x+2)$$

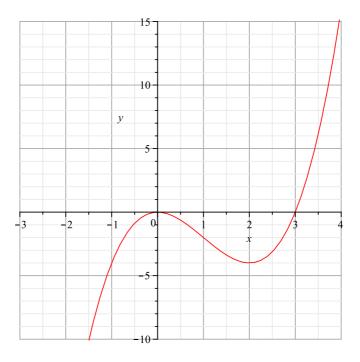


FIGURE 1.7 – Représentations graphiques des fonctions f, g et h

Plus généralement, on a le théorème suivante :

Théorème 2:

- La courbe représentative de la fonction $x \mapsto f(x) + \lambda$ est l'image de la courbe représentative de f par la translation de vecteur $\lambda \overrightarrow{j}$.
- La courbe représentative de la fonction $x \mapsto f(x + \lambda)$ est l'image de la courbe représentative de f par la translation de vecteur $-\lambda \overrightarrow{i}$.

V Fonctions usuelles

V.1 Fonctions puissances et racines n-ième

Propriété 12 : On appelle fonction puissance d'exposant $\alpha \in \mathbb{R}$ l'application définie sur $]0;+\infty[$ par

$$x \mapsto x^{\alpha}$$

DÉFINITION 9 : Pour $n \in \mathbb{N}$ tel que $n \ge 2$ et $x \ge 2$, on pose

$$\sqrt[n]{x} = x^{\frac{1}{n}}$$

La fonction $x \mapsto \sqrt[n]{x}$ est appelée fonction racine n-ième.

REMARQUE 6: La fonction $x \mapsto \sqrt[n]{x}$ est l'application réciproque de $x \mapsto x^n$ de \mathbb{R}^+ dans \mathbb{R}^+ .

Exercice 1.8 Simplifier les expressions suivantes :

$$\sqrt[3]{27}$$
 ; $\sqrt{3^2 + 4^2}$; $\sqrt[5]{32}$

V.2 La fonction logarithme népérien

Propriété 13 : La fonction ln est strictement croissante sur $]0;+\infty[$.

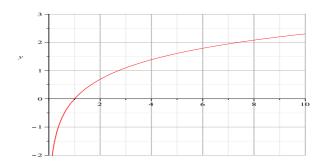


FIGURE 1.8 – Représentation graphique de la fonction ln

COROLLAIRE 2: Soient a et b deux réels strictement positifs.

- $\ln(a) = \ln(b) \Leftrightarrow a = b$.
- $\ln(a) > \ln(b) \Leftrightarrow a > b$.
- $\ln(a) > 0 \Leftrightarrow a > 1$.

Propriétés algébriques de ln)

Soient a et b deux réels strictement positifs.

- $\ln(ab) = \ln(a) + \ln(b)$ et $\ln\left(\frac{a}{b}\right) = \ln(a) \ln(b)$.
- $\forall p \in \mathbb{R}, \ln(a^p) = p \ln(a).$

V.3 Fonctions exponentielles

Définition 10 :

La fonction exponentielle $\exp:x\mapsto \mathrm{e}^x$ est la fonction réciproque de la fonction ln.

Conséquences :

- $\forall x \in \mathbb{R}$, on a : $\ln(e^x) = x$.
- $\forall y > 0$, on $a : e^{\ln y} = y$.

Propriété 15 : La fonction exp est strictement croissante sur \mathbb{R} .

COROLLAIRE 3: Soient a et b deux réels.

- $e^a = e^b \Leftrightarrow a = b$.
- $e^a > e^b \Leftrightarrow a > b$.

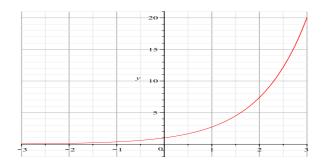


FIGURE 1.9 – Représentation graphique de la fonction exp

DÉFINITION 11 : (Fonction exponentielle de base a)

Soit a un réel strictement positif.

La fonction exponentielle de base a, notée \exp_a , est définie par : $\exp_a(x) = a^x = e^{x \ln a}$.

Propriété 16 : Soit a un réel strictement positif.

- Lorsque a>1, la fonction \exp_a est définie et strictement croissante sur $\mathbb R.$
- Lorsque a < 1, la fonction \exp_a est définie et strictement décroissante sur $\mathbb R.$
- Lorsque a=1, la fonction \exp_a est définie et constante sur $\mathbb R.$

En effet :

Chapitre 2

GENERALITES SUR LES NOMBRES COMPLEXES

Ι Forme algébrique

Introduction:

On définit le nombre imaginaire j tel que $j^2 = -1$.

j correspond au nombre noté dans le secondaire i, solution de l'équation $X^2 + 1 = 0$.

On définit l'ensemble des nombres complexes, noté \mathbb{C} par $\mathbb{C} = \{a + jb, (a; b) \in \mathbb{R}^2\}$.

Enfin on munit cet ensemble des lois "+" et " \times " telles que celles-ci prolongent les lois de \mathbb{R} .

A noter que : $\mathbb{R} \subset \mathbb{C}$.

Généralités I.1

DÉFINITION 1 : Soit z = a + jb (a et b réels) un nombre complexe. On a : Re(z) = a (partie réelle) et Im(z) = b (partie imaginaire). Si Re(z) = 0, on dit que z est un imaginaire pur.

Remarque 1:

- Les parties réelles et imaginaires d'un nombre complexe sont des nombres réels.
- Si $\operatorname{Im}(z) = 0$ alors $z \in \mathbb{R}$.

Propriété 17 : (Egalité de deux nombres complexes)

Deux nombres complexes sont égaux si et seulement s'ils ont la même partie réelle et la même partie

Ainsi : $a + jb = a' + jb' \Leftrightarrow \begin{cases} a = a' \\ b = b' \end{cases}$.

Nombre complexe conjugué

DÉFINITION 2 : Le nombre complexe \bar{z} , conjugué de z = a + jb, est tel que $\bar{z} = a - jb$.

Propriété 18:

Pour tous nombres complexes z et $z^{\prime},$ n étant un entier, on a :

- $\overline{(z+z')} = \overline{z} + \overline{z'}$; $\overline{(z\times z')} = \overline{z} \times \overline{z'}$; $\overline{z^n} = \overline{z}^n$ et $\overline{\overline{z}} = z$.
- $z \in \mathbb{R} \Leftrightarrow z = \bar{z}$
- $z \in \mathbb{R} \Leftrightarrow z = \underline{z}$. $\operatorname{si} z \neq 0 \operatorname{alors} \left(\frac{1}{z}\right) = \frac{1}{\overline{z}} \; ; \; \overline{\left(\frac{z'}{z}\right)} = \frac{\overline{z'}}{\overline{z}}$. $\operatorname{On a} : \left\{ \begin{array}{c} z + \overline{z} = 2\operatorname{Re}(z) \\ z \overline{z} = 2j\operatorname{Im}(z) \end{array} \right.$

II Nombres complexes et géométrie.

Soit $(O; \overrightarrow{u}, \overrightarrow{v})$ un repère orthonormal et M(a; b) un point du plan, z = a + jb. On a la relation : $\overrightarrow{OM} = a\overrightarrow{u} + b\overrightarrow{v}$.

DÉFINITION 3 : z est appelé l'affixe de M (M est l'image de z). z est également l'affixe du vecteur \overrightarrow{OM} .

PROPRIÉTÉ 19 : (Affixe d'un vecteur) Soient A et B deux points d'affixes respectives z_A et z_B .

L'affixe de \overrightarrow{AB} est égale à $z_B - z_A$.

III Forme trigonométrique

III.1 Module d'un nombre complexe

DÉFINITION 4 : Soient z = a + jb et M le point-image associé à z. Le module de z est le nombre réel, noté |z|, tel que :

$$|z| = OM = \left\| \overrightarrow{OM} \right\|$$

Propriété 20 :

- $\bullet |z| = \sqrt{a^2 + b^2}.$
- $|z| \in \mathbb{R}^+$.

PROPRIÉTÉ 21 : (Inégalité triangulaire) Pour tous nombres complexes z et z', on a

$$|z + z'| \le |z| + |z'|$$

Démonstration :

III.2 Arguments d'un nombre complexe non nul

DÉFINITION 5: Soit z un nombre complexe non nul. Un argument de z est le réel, noté $\arg(z)$, correspondant à une mesure de l'angle orienté $(\overrightarrow{u}; \overrightarrow{OM})$

Propriété 22 : (Lien entre notation algébrique et trigonométrique) Soit z = a + jb un nombre complexe non nul avec $\rho = |z|$ et $\theta = \arg(z)$. On a : $z = \rho (\cos \theta + j \sin \theta)$ avec $\begin{cases} a = \rho \cos \theta \\ b = \rho \sin \theta \end{cases}$ soit $\begin{cases} \rho = \sqrt{a^2 + b^2} \\ \cos \theta = \frac{a}{\rho} \\ \sin \theta = \frac{b}{\rho} \end{cases}$

Exercice 2.1 Déterminer le module et un argument de $z = -1 + \sqrt{3}j$.

Propriété 23 : Soient z et z' deux nombres complexes non nuls.

- |zz'| = |z||z'| et $\arg(zz') = \arg(z) + \arg(z')[2\pi]$.

- $|\bar{z}| = |z|$ et $\arg(\bar{z}) = \arg(z)[2\pi]$. $|\bar{z}| = |z|$ et $\arg(\bar{z}) = -\arg(z)[2\pi]$. $|\frac{z}{z}| = \frac{1}{|z|}$ et $\arg(\frac{z}{z}) = -\arg(z)[2\pi]$. $|z| = \frac{|z|}{|z'|}$ et $\arg(\frac{z}{z'}) = \arg(z) \arg(z')[2\pi]$. $z\bar{z} = |z|^2$.
- $z \in \mathbb{R}$ \Leftrightarrow $\overline{z^n} = \overline{z}^n$ \Leftrightarrow z = 0 ou $\arg(z) = 0[\pi]$.
- z est imaginaire pur si et seulement si $\arg(z) = \frac{\pi}{2}[\pi]$

Exercice 2.2 Déterminer le module et un argument du nombre complexe $z = \frac{(-1+3j)(2+2j)}{(3+j)(1-j)}$.

Exercice 2.3 Soient z et z' deux nombres complexes non nuls. Déterminer une condition nécessaire et suffisante pour que |z+z'|=|z|+|z'|.

Forme exponentielle IV

IV.1Généralités

DÉFINITION 6 : Pour tout réel θ , on note : $e^{j\theta} = \cos \theta + j \sin \theta$. Ainsi, si $z = \rho (\cos \theta + j \sin \theta)$ alors $z = \rho e^{j\theta}$ (avec $\rho = |z|$).

Propriété 24 : Soient z et z^\prime deux nombres complexes non nuls. $zz' = \rho \rho' e^{j\left(\theta + \theta'\right)}$; $\frac{1}{z} = \frac{1}{\rho} e^{-j\theta}$; $\frac{z}{z'} = \frac{\rho}{\rho'} e^{j\left(\theta - \hat{\theta'}\right)}$; $\bar{z} = \rho e^{-j\theta}$.

- $\begin{array}{l} \underline{\text{A retenir}:} \\ \bullet \ \ \mathrm{e}^{2jk\pi} = 1 \quad (k \in \mathbb{Z}) \quad ; \quad \mathrm{e}^{j\frac{\pi}{2}} = j \quad ; \quad \mathrm{e}^{-j\frac{\pi}{2}} = -j. \\ \bullet \ \ \text{Pour tout entier } n \text{, on a} : \left(\mathrm{e}^{j\theta}\right)^n = \mathrm{e}^{jn\theta}. \end{array}$

Propriété 25 : (Formule de Moivre) Pour tout $n \in \mathbb{Z}$, $(\cos \theta + j \sin \theta)^n = \cos(n\theta) + j \sin(n\theta)$.

En effet :

Théorème 1 : (Formules d'Euler)
$$\cos \theta = \frac{e^{j\theta} + e^{-j\theta}}{2} \quad \text{et} \quad \sin \theta = \frac{e^{j\theta} - e^{-j\theta}}{2j}.$$

En effet:

Applications IV.2

Linéarisation de $\cos^n x$ et $\sin^n x$

La linéarisation d'un polynôme dont la variable est $\cos x$ ou $\sin x$ consiste à l'identifier à un polynôme du premier degré des variables $\cos x$, $\sin x$, $\sin(2x)$,

A noter que cette méthode utilise les formules d'Euler ainsi que la formule du binôme de Newton.

Théorème-Définition 1 : (Formule du binôme de Newton)
$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k} \text{ où } \binom{n}{k} = \frac{n!}{k! (n-k)!} .$$
 Les coefficients binomiaux $\binom{n}{k}$ peuvent se retrouver en utilisant le **triangle de Pascal** :

$n \cdot \cdot \cdot k$	0	1	2	3	4	
0	1					
1	1	1				
2	1	2	1			
3						
4						
•						

Exemple 1 En utilisant ce qui précède, déterminer : $(a+b)^3$; $(a+b)^4$; $(a-b)^3$; $(a-b)^4$.

Exercice 2.4 $Linéariser \cos^3 x$.

IV.2.2 Expression de $\cos(nx)$ et $\sin(nx)$ en fonction de $\cos x$ et $\sin x$

Il suffit de développer $(\cos \theta + j \sin \theta)^n$ en utilisant la formule du binôme de Newton puis de séparer les parties réelle et imaginaire en faisant le lien avec la **formule de Moivre**.

Exercice 2.5 Exprimer $\cos(2x)$ et $\sin(2x)$ en fonction de $\cos x$ et $\sin x$.

V Equations

V.1 Racines carrés

DÉFINITION 7 : Soit Z un nombre complexe donné. On appelle racine carrée de Z tout nombre complexe z tel que $z^2=Z$.

Propriété 26 : (Racines carrées d'un réel)

- 1. Cas où Z est un réel positif ou nul :
 - (a) Cas où Z = 0: $z^2 = 0 \Leftrightarrow z = 0$.
 - (b) Cas où Z>0, on a : $z^2=Z\Longleftrightarrow z=\sqrt{Z}$ ou $z=-\sqrt{Z}.$
- 2. Cas où Z est un réel négatif : $z^2 = Z \Longleftrightarrow z = j\sqrt{-Z} \text{ ou } z = -j\sqrt{-Z}.$

Exercice 2.6 Déterminer les racines carrées de -16.

V.2 Equations du second degré du type $az^2 + bz + c = 0$ $(a \neq 0)$

On rappelle que $az^2+bz+c=a\left[\left(z+\frac{b}{2a}\right)^2-\frac{\Delta}{4a^2}\right]$ où $\Delta=b^2-4ac.$

Résoudre l'équation $az^2 + bz + c = 0$ revient donc à résoudre $\left(z + \frac{b}{2a}\right)^2 = \frac{\Delta}{4a^2}$ en utilisant l'une des méthodes vue précédemment.

Propriété 27: (Résolution d'une équation du second degré)

L'équation $az^2 + bz + c = 0$ $(a \neq 0)$ admet deux solutions :

$$z_1 = \frac{-b-\delta}{2a}$$
 et $z_2 = \frac{-b+\delta}{2a}$ où δ est une racine carrée de Δ .

V. EQUATIONS 19

On a ainsi:

- Si $\Delta > 0$ alors l'équation $az^2 + bz + c = 0$ admet deux solutions : $z_1 = \frac{-b \sqrt{\Delta}}{2a}$ et $z_2 = \frac{-b + \sqrt{\Delta}}{2a}$.

 Si $\Delta = 0$ alors l'équation $az^2 + bz + c = 0$ admet une unique solution : $z_0 = \frac{-b}{2a}$.

 Si $\Delta < 0$ alors l'équation $az^2 + bz + c = 0$ admet deux solutions (complexes conjuguées) : $z_1 = \frac{-b j\sqrt{-\Delta}}{2a}$ et $z_2 = \frac{-b + j\sqrt{-\Delta}}{2a}$.

Exercice 2.7 Résoudre, dans \mathbb{C} , l'équation suivante : $z^2 + z + 1 = 0$.

Racines n-ième d'un nombre complexe

V.3.1 Racines n-ième de l'unité

Théorème 2:

L'équation $z^n = 1$ admet n solutions distinctes de la forme $e^{\frac{2jk\pi}{n}}$ avec $k \in \{0; 1; 2;; n-1\}$.

En effet:

Exercice 2.8 Déterminer les solutions de l'équation $z^3 = 1$.

Racines n-ième d'un nombre complexe quelconque

Soit a un nombre complexe non nul de module ρ et d'argument θ . L'objectif est de déterminer les nombres complexes z tels que $z^n = a$.

Point méthode:

• On détermine un nombre complexe α tel que $a = \alpha^n$. L'équation $z^n = a$ est alors équivalente à $z^n = \alpha^n$ i.e.

$$\left(\frac{z}{\alpha}\right)^n = 1$$

 \bullet Les valeurs $\frac{z}{\alpha}$ correspondent aux racines n-ièmes de l'unité. D'où les solutions de l'équation ...

Exercice 2.9 Résoudre, dans \mathbb{C} , l'équation : $z^3 = -27$.

Chapitre 3

LIMITES DE FONCTIONS

I Rappel sur les limites à droite et à gauche

 ℓ désigne un réel ou $+\infty$ ou $-\infty$.

```
DÉFINITION 1 : Soient f: D \to \mathbb{R}, a \in \mathbb{R} et D_+ = D \cap ]a; +\infty[.
On dit que f est définie au voisinage à droite en a si f restreinte à D_+ est définie au voisinage de a.
L'éventuelle limite \ell de f restreinte à D_+ en a est alors appelée limite à droite de f en a.
On note : \lim_{x \to a} f(x) = \ell.
```

Remarque 1 : Une fonction f admet une limite en a si, et seulement si, elle admet des limites à droite et gauche et que celles-ci sont égales.

```
On a alors: \lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = \lim_{x \to a} f(x).
```

II Limites des fonctions usuelles

```
Théorème 1 : (Limites de la fonction logarithme Néperien) \lim_{x\to +\infty} \ln x = +\infty \quad \text{et} \quad \lim_{x\to 0^+} \ln x = -\infty.
```

```
Théorème 2: (Limites de la fonction Exponentielle) \lim_{x \to +\infty} e^x = +\infty \quad \text{et} \quad \lim_{x \to -\infty} e^x = 0.
```

```
\begin{array}{l} \textbf{Th\'eor\`eme 3}: \text{(Limites des fonctions exponentielles de base $a$ où $a>0$)} \\ \text{Si $a>1:} \lim_{x\to +\infty} a^x = +\infty \quad \text{et} \quad \lim_{x\to -\infty} a^x = 0 \ . \\ \text{Si $0< a<1:} \lim_{x\to +\infty} a^x = 0 \quad \text{et} \quad \lim_{x\to -\infty} a^x = +\infty \ . \end{array}
```

 En effet :

Théorème 4: (Limites des Fonctions puissances) Si
$$\alpha > 0$$
: $\lim_{x \to +\infty} x^{\alpha} = +\infty$ et $\lim_{x \to 0^{+}} x^{\alpha} = 0$. Si $\alpha < 0$: $\lim_{x \to +\infty} x^{\alpha} = 0$ et $\lim_{x \to 0^{+}} x^{\alpha} = +\infty$.

III Théorèmes généraux sur les limites

III.1 Limite d'une somme de deux fonctions

$\lim_{a} f$	$\lim_{a} g$	$\lim_{a} (f+g)$
λ_1	λ_2	$\lambda_1 + \lambda_2$
$+\infty$	$+\infty$	$+\infty$
$+\infty$	- ∞	Forme indéterminée
$-\infty$	$-\infty$	$-\infty$

Exercice 3.1 Déterminer les limites suivantes : $\lim_{x \to +\infty} 3x^2 + 5x - 2$ et $\lim_{x \to -\infty} 3x^3 + 5x - 2$.

III.2 Limite d'un produit de deux fonctions

$\lim_{a} f$	$\lim_{a} g$	$\lim_{a} (fg)$
λ_1	λ_2	$\lambda_1 imes \lambda_2$
$\lambda \neq 0$	∞	∞ (1)
0	∞	Forme indéterminée
∞	∞	∞ (1)

⁽¹⁾ Avec le respect de la règle des signes.

III.3 Limite de l'inverse d'une fonction

$\lim_{a} f$	$\lim_{a} \frac{1}{f}$
$\lambda \neq 0$	$\frac{1}{\lambda}$
0^{+}	$+\infty$
0 –	$-\infty$
∞	0

III.4 Limite d'un quotient de deux fonctions

$\lim_{a} f$	$\lim_{a} g$	$\lim_{a} \left(\frac{f}{g} \right)$
λ_1	$\lambda_2 \neq 0$	$\frac{\lambda_1}{\lambda_2}$
$\lambda_1 \neq 0$	0	∞
λ_1	∞	0
0	0	Forme indéterminée
∞	λ_2	∞
∞	∞	Forme indéterminée

Exercice 3.2 Déterminer : $\lim_{x \to +\infty} \frac{3x^2 - 5x + 1}{x - 3}$.

Propriété 28: (Règles opératoires sur les polynômes)

- A l'infini, la limite d'une fonction polynôme est la limite de son terme de plus haut degré.
- A l'infini, la limite d'une fonction rationnelle est la limite du quotient de ses termes de plus haut degré.

Ainsi, considérons la fonction f définie sur]1; $+\infty$ [par $f(x) = \frac{x^3 - 2x + 3}{-x^2 + x}$ Pour la limite en $+\infty$, on peut écrire l'enchaînement suivant : $\lim_{+\infty} f = \lim_{x \to +\infty} \frac{x^3}{-x^2} = \lim_{x \to +\infty} -x = -\infty$.

III.5 Limite de la composée de deux fonctions

```
Théorème 5: a, k et \ell désignent un réel, +\infty ou -\infty.
Soient f et g deux fonctions telles que \operatorname{Im}(g) \subset \mathfrak{D}_f.
Si \lim_{x \to a} g(x) = k et \lim_{x \to k} f(x) = \ell alors \lim_{x \to a} (f \circ g)(x) = \ell.
```

Exercice 3.3 Déterminer : $\lim_{x \to +\infty} e^{\frac{x}{x^2+1}}$.

IV Théorèmes de comparaisons

Théorème 6: (Limite d'une fonction positive) Soient f une fonction définie sur un intervalle I du type]a;b] (a et b sont des réels ou $+\infty$ ou $-\infty$). On suppose que f admet une limite en $x_0 \in I$. Si, pour tout $x \in I$, $f(x) \ge 0$ alors $\lim_{x \to x_0} f(x) \ge 0$.

Remarque 2 : A noter que la conclusion est identique si f > 0.

COROLLAIRE 4 : (Comparaison de deux fonctions) Soient f et g deux fonctions définies sur un intervalle I du type]a;b] (a et b sont des réels ou $+\infty$ ou $-\infty$). On suppose que f et g admettent une limite en $x_0 \in I$. Si, pour tout $x \in I$, $f(x) \leq g(x)$ alors $\lim_{x \to x_0} f(x) \leq \lim_{x \to x_0} g(x)$.

Remarque 3 : A noter que la conclusion est identique si f < g.

```
Théorème 7: (Théorème d'encadrement) Soient f, g et h trois fonctions définies au voisinage de a où a est un réel, +\infty ou -\infty. Si f(x) \leq g(x) \leq h(x) et si \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} h(x) = k alors \lim_{x \to +\infty} g(x) = k.
```

Exercice 3.4 Déterminer $\lim_{x \to +\infty} \frac{3x + \sin(x)}{x+2}$.

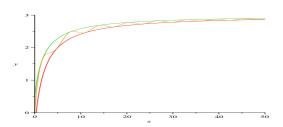


Figure 3.1 – illustration du théorème des "gendarmes"

\mathbf{V} Comportement asymptotique

Théorème 8:

- Si $\lim f(x) = \pm \infty$, alors la courbe représentative de f admet une asymptote d'équation x = a.
- Si $\lim_{x \to a} f(x) = b$, alors la courbe représentative de f admet une asymptote d'équation y = b.
- Si $\lim_{x \to a} [f(x) (ax + b)] = 0$ alors la droite d'équation y = ax + b est asymptote à la courbe représentative de f .

Exercice 3.5 Démontrer l'existence d'asymptotes aux courbes représentatives des fonctions f et g définies sur]0; +\infty[par : $f(x) = \frac{3x+1}{x+1}$ et $g(x) = \frac{(x+1)^2}{x}$.

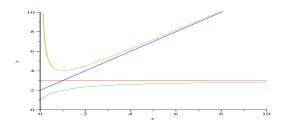


FIGURE 3.2 – Représentation graphique des fonctions f et g

Croissances comparées des fonctions usuelles

Théorème 9 : (Théorème des croissances comparées)

- $\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$ et $\lim_{x \to 0^+} x \ln(x) = 0$.
- $\lim_{x \to -\infty} x e^x = 0$ et $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$.
- Si a > 1: $\lim_{x \to -\infty} x a^x = 0$ et $\lim_{x \to +\infty} \frac{a^x}{x} = +\infty$.
- Si $0 < a < 1 : \lim_{x \to +\infty} xa^x = 0$ et $\lim_{x \to -\infty} \frac{a^x}{x} = -\infty$.
- Si $\alpha > 0$ alors $\lim_{x \to 0^+} x^{\alpha} \ln(x) = 0$ et
- $\lim_{x \to +\infty} \frac{\ln(x)}{x^{\alpha}} = 0.$ $\lim_{x \to +\infty} \frac{e^x}{x^{\alpha}} = +\infty.$ • $\forall \alpha \in \mathbb{R}$, on a : $\lim_{x \to -\infty} |x|^{\alpha} e^{x} = 0$ et

Exercice 3.6 Montrer que la droite d'équation y = -3x + 2 est asymptote, au voisinage $de + \infty$, à la courbe représentative de la fonction $f: x \mapsto \frac{-3x^2 + 2x + 5 \ln x}{x}$.

Exercice 3.7 Déterminer les limites suivantes : $\lim_{x \to +\infty} x^{\frac{1}{x}}$ et $\lim_{x \to 0^+} x^{\frac{1}{x}}$.

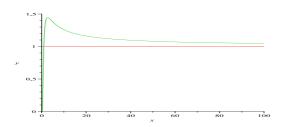


FIGURE 3.3 – Représentation graphique de la fonction $x \mapsto x^{\frac{1}{x}}$

Remarque 4 : Rappelons la définition d'une limite finie en $+\infty$.

On a : $\lim_{x \to +\infty} f(x) = \overline{\ell}$ si $\forall \varepsilon > 0$, $\exists M > 0$, $\forall x > M$, on a : $|f(x) - \ell| < \varepsilon$.

Sur l'exemple précédent, on constate qu'on peut rendre $x^{\frac{1}{x}}$ aussi proche que l'on souhaite de 1 dès lors que xest suffisamment grand $\left(\lim_{x\to+\infty} f(x) = 1\right)$.

On a donc : $\forall \varepsilon > 0$, $\exists M > 0$, $\forall x > M$, on a : $|x^{\frac{1}{x}} - 1| < \varepsilon$. En prenant, par exemple, $\varepsilon = 0, 1$, on a : $\exists M > 0$, $\forall x > M$, on a : $0, 9 < x^{\frac{1}{x}} < 1, 1$.

Chapitre 4

DÉRIVATION ET CONTINUITÉ

Fonction dérivée

I.1 Généralités

DÉFINITION 1 : Soit f une fonction définie sur un intervalle I contenant x_0 .

- On dit que f est dérivable en x_0 si $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}$ existe et est finie. Si f est dérivable en tout point de I, on peut définir sur I la fonction $f': x\mapsto f'(x)$ appelée fonction dérivée de f.

REMARQUE 1 : Si f est dérivable en x_0 alors $\frac{f(x_0+h)-f(x_0)}{h}$ est voisin de $f'(x_0)$ lorsque h est voisin de 0.

REMARQUE 2 : Le nombre dérivé d'une fonction en x_0 , s'il existe, correspond à la pente de la tangente à la courbe représentative de la fonction au point d'abscisse x_0 . Une équation de cette tangente est

$$y = f'(x_0)(x - x_0) + f(x_0)$$

Illustration graphique:

I.2 Dérivéees des fonctions usuelles

Fonction $x \mapsto$	Dérivée $x \mapsto$	Ensemble de dérivabilité
k (constante)	0	\mathbb{R}
x^n	nx^{n-1}	$\mathbb{R} \text{ si } n > 0 \text{ et } \mathbb{R}^* \text{ si } n < 0$
$\frac{1}{x}$	$\frac{-1}{x^2}$	\mathbb{R}^*
\sqrt{x}	$\frac{1}{2\sqrt{x}}$	$]0;+\infty]$
$\sin x$	$\cos x$	\mathbb{R}
$\cos x$	$-\sin x$	\mathbb{R}
$\ln x$	$\frac{1}{x}$	$]0;+\infty]$
e^x	e^x	\mathbb{R}

I.3 Dérivées et limites usuelles en 0

Théorème 1:
$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$
; $\lim_{x \to 0} \frac{\ln (1+x)}{x} = 1$ et $\lim_{x \to 0} \frac{e^x - 1}{x} = 1$.

En effet :

Opérations sur les fonctions dérivées **I.4**

Théorème 2:

Soient u et v deux fonctions dérivables sur le même ensemble D.

Les fonctions suivantes sont dérivables sur D et on a :

- (au + bv)' = au' + bv' pour a et b réels quelconques.
- $\bullet (uv)' = u'v + uv'.$
- $\left(\frac{1}{v}\right)' = \frac{-v'}{v^2}$. $\left(\frac{u}{v}\right)'(x) = \frac{u'v uv'}{v^2}(x)$ pour tout x tel que $v(x) \neq 0$.

Théorème 3 : (Dérivation de fonctions composées)

Soit u une fonction définie sur un intervalle I ouvert contenant x_0 et v une fonction définie sur un intervalle J contenant $y_0 = u(x_0)$.

Si u est dérivable en x_0 et si v est dérivable en y_0 alors la fonction $v \circ u$ est dérivable en x_0 et on a : $(v \circ u)'(x_0) = u'(x_0) \times v'(u(x_0)).$

Exercice 4.1 Montrer que $f: x \mapsto \sin(x^2)$ est dérivable sur \mathbb{R} et déterminer f'.

COROLLAIRE 5:

Soit u une fonction définie sur un intervalle I.

- Pour tout $n \in \mathbb{N}$, u^n est dérivable sur I (avec la condition $u(x) \neq 0$ pour n < 0) et on a : $(u^n)' = nu'u^{n-1}.$
- e^u est dérivable sur I et on a : $(e^u)^{'} = u'e^u$.
- Si u>0 sur I alors les fonctions \sqrt{u} et $\ln u$ sont dérivables sur I et on a : $(\sqrt{u})' = \frac{u'}{2\sqrt{u}}$ et $(\ln u)' = \frac{u'}{u}$.

REMARQUE 3: Soit n un entier naturel non nul. On a: $\left(\frac{1}{n^n}\right)' = -n\frac{u'}{n^{n+1}}$. En effet:

Exercice 4.2 Déterminer les fonctions dérivées des fonctions définies par : $f(x) = \sqrt{x^2 + 2}$; $g(x) = 5e^{x^2}$; $h(x) = xe^{-x}$ et $k(x) = \frac{3}{(1+2x)^5}$.

II Applications de la dérivation

II.1 Sens de variations d'une fonction

Théorème 4 : Soit f une fonction dérivable sur un intervalle I.

- f est constante sur I si et seulement si f'est nulle sur I.
- Si f' < 0 sur I (sauf en un nombre fini de points) alors f est strictement décroissante sur I.
- Si f' > 0 sur I (sauf en un nombre fini de points) alors f est strictement croissante sur I.

REMARQUE 4 : Ce théorème n'est valable que sur un intervalle. En effet, la fonction "Inverse" est décroissante sur \mathbb{R}_{+}^{*} et sur \mathbb{R}_{+}^{*} , mais pas sur \mathbb{R}^{*} .

II.2 Extremum d'une fonction

Théorème 5: Soit f une fonction définie sur un intervalle ouvert contenant x_0 . Si f' s'annule en changeant de signe en x_0 alors f admet un extremum en x_0 .

REMARQUE 5: Dans ce cas, C_f admet une tangente horizontale en $M_0(x_0; f(x_0))$.

II.3 Plan d'étude d'une fonction

- 1. Ensemble de définition
- 2. Eventuelle parité ou périodicité (pour réduire l'ensemble d'étude).
- 3. Limites ou valeurs de f aux bornes des intervalles constituant D_f .
- 4. Dérivabilité, continuité et variations (signe de f').
- 5. Eventuellement:

Représentation graphique avec recherche de branches infinies, points et tangentes remarquables.

Exercice 4.3 Soit f la fonction $x \mapsto x + \sin^2 x$ et C_f sa courbe représentative dans un repère orthonormal.

- 1. Déterminer les limites de f aux bornes de son domaine de définition. Montrer que, pour tout réel x, on $a: f(x+\pi) = f(x) + \pi$.
- 2. Etablir le tableau de variations de f sur $[0;\pi]$. Déterminer les points d'intersection de C_f avec les droites d'équation y=x et y=x+1. Préciser les tangentes en ces points.
- 3. Etudier, sur $]0; \frac{\pi}{2}]$, la position de C_f par rapport à sa tangente au point d'abscisse $\frac{\pi}{4}$. (On posera $x = \frac{\pi}{4} + h$ et on montrera que : $f(x) = \frac{\pi}{4} + \frac{1}{2} + h + \frac{1}{2} \sin{(2h)}$). Tracer C_f .

III. CONTINUITÉ

III Continuité

III.1 Continuité en un point

DÉFINITION 2 : Soit f une fonction définie sur un intervalle I de \mathbb{R} et $a \in I$. On dit que f est continue en a si $\lim_{x\to a} f(x) = f(a)$.

Exercice 4.4 Etudier la continuité de $f: x \mapsto |x-1|$ et $x \mapsto \lfloor x \rfloor$ en 1.

III.2 Fonction continues usuelles

DÉFINITION 3 : Soit I un intervalle de \mathbb{R} . f est dite continue sur I si f est continue en tout réel x appartenant à I.

Théorème 6:

Les fonctions polynômes, rationnelles, exponentielles, puissances, logarithmes, trigonométriques sont continues sur leur ensemble de définition.

III.3 Propriétés

 ${\bf Th\'{e}or\`{e}me}~{\bf 7}:~({\rm Continuit\'{e}~et~op\'{e}rations})$

Soient f et g deux fonctions continues , k étant un réel.

Les fonctions suivantes sont aussi continues en a :

f + g; $f \times g$; kf et $\frac{f}{g}$ (en supposant $g(a) \neq 0$).

Théorème 8 : (Continuité et composée de fonctions)

Soient f et g deux fonctions telles que $\text{Im}(f) \subset D_g$.

Si f est continue en a et g est continue en f(a) alors $g \circ f$ est continue en a.

III.4 Prolongement par continuité

Théorème-Définition 2 :

Si f n'est pas définie en a mais que $\lim_{x\to a}f(x)$ existe et est finie alors on pourra définir une fonction notée

$$\hat{f} \text{ par } \hat{f}(x) = \begin{cases} f(x) & \text{si } x \in D_f \\ \lim_{x \to a} f(x) & \text{si } x = a \end{cases}$$

 \hat{f} est continue en a et s'appelle le prolongement par continuité de f en a.

Exercice 4.5 Considérons la fonction sinus cardinal définie par $f(x) = \frac{\sin x}{x}$.

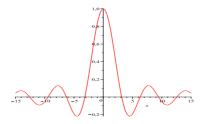


Figure 4.1 – Représentation de la fonction sinus cardinal

IV Propriétés des fonctions continues

IV.1 Théorème des valeurs intermédiaires

Théorème 9 : (TVI)

Soit f une fonction continue sur [a; b].

Pour tout réel u compris entre f(a) et f(b), l'équation f(x) = u admet au moins une solution.

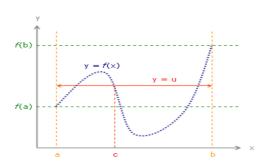


Figure 4.2 – Illustration du TVI

Théorème 10 : (Application aux fonctions strictement monotones)

Soit f une fonction continue sur [a; b] et strictement monotone.

Pour tout réel u compris entre f(a) et f(b), l'équation f(x) = u admet une unique solution appartenant à [a;b].

DÉFINITION 4 : Soit f une application de E dans F.

On dit que f est bijective si tout élément de l'ensemble d'arrivée F admet un unique antécédent par f dans l'ensemble de départ E.

Théorème 11 : (Théorème de la bijection)

Si f est une fonction continue et strictement monotone sur un intervalle [a; b] alors elle réalise une bijection entre [a; b] et l'intervalle fermé dont les bornes sont f(a) et f(b).

Exercice 4.6 Montrer que l'équation $2^x + 3^x = 13$ admet une unique solution sur \mathbb{R} .

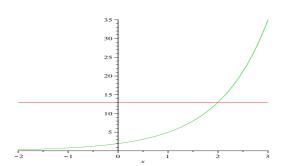


FIGURE 4.3 – Représentation graphique de la foncion $f: x \mapsto 2^x + 3^x$

Chapitre 5

APPLICATIONS DES NOMBRES COMPLEXES

I Factorisation de polynômes à coefficients réels

I.1 Division euclidienne

DÉFINITION 1 : L'ensemble des polynômes à coefficients dans \mathbb{K} se note $\mathbb{K}[X]$.

Théorème-Définition 3 : Soient A et B deux polynômes à coefficients réels.

Effectuer la division euclidienne de A par B revient à trouver deux polynômes (uniques) Q et R tels que : A = BQ + R avec $d^{\circ}R < d^{\circ}B$.

Q s'appelle le quotient, R le reste de la division euclidienne de A par B.

Si R = 0, on dit que B divide A.

Exercice 5.1 Effectuer la division euclidienne de $X^4 + 2X^3 + 5X^2 + 4X + 1$ par $X^2 + 3X - 1$.

I.2 Racine, multiplicité

DÉFINITION 2 : On dit que α est une racine du polynôme P si $P(\alpha) = 0$.

Théorème 1: P est divisible par le polynôme $X - \alpha$ si et seulement si α est **racine** du polynôme P.

En effet :

 \Rightarrow

 \Leftarrow

DÉFINITION 3 : Soit P un polynôme non nul et α une racine de P.

On appelle **multiplicité** de la racine α l'entier $m \ge 1$ que $\begin{cases} (X - \alpha)^m & \text{divise } P \\ (X - \alpha)^{m+1} & \text{ne divise pas } P \end{cases}$.

Exercice 5.2 On considère $P = (X - 6)^4 (X + 2)^2$. 6 est une racine de P de multiplicité de P.

Théorème 2 : (Théorème de d'Alembert-Gauss)

Tout polynôme à coefficients réels admet au moins une racine complexe.

COROLLAIRE 6 : Dans $\mathbb{C}[X]$, tout polynôme de degré n > 0 est scindé, c'est-à-dire qu'il se factorise en produit de n polynômes du premier degré; il a exactement n racines (en tenant compte des ordres de multiplicité).

Exercice 5.3 Factoriser, au maximum, le polynôme $P = X^3 + 2X^2 + 2X + 1$.

Théorème 3:

Soit P un polynôme à coefficients réels.

Si α est une racine complexe du polynôme P alors $\bar{\alpha}$ est aussi racine de P.

De plus, $(X - \alpha).(X - \bar{\alpha}) = X^2 - 2\cos(\alpha)X + |\alpha|^2 \in \mathbb{R}_2[X].$

En effet:

PROPRIÉTÉ 29 : (Décomposition d'un polynôme en produit de facteurs dans $\mathbb{R}[X]$) Les seuls polynômes irréductibles dans $\mathbb{R}[X]$ sont ceux du premier degré et ceux de la forme $X^2 + aX + b$ avec $\Delta < 0$.

II Application aux circuits fonctionnant en régime permanent sinusoïdal

II.1 Généralités

DÉFINITION 4 : (Vecteurs de Fresnel)
A la grandeur $x(t) = X_m \cos(\omega t + \varphi)$, on associe, dans le repère $(O; \vec{u}, \vec{v})$, le vecteur (dit de Fresnel) \overrightarrow{OM} tel que : $\|\overrightarrow{OM}\| = X_m$ et $(\vec{u}; \overrightarrow{OM}) = \omega t + \varphi$.

REMARQUE 1 : si $y(t) = X_m \cos{(\omega t + \varphi')}$, l'angle $\varphi_{y/x} = \left(\overrightarrow{OM}; \overrightarrow{OM'}\right) = \varphi' - \varphi$ est appelé déphasage de y par rapport à x.

DÉFINITION 5 : (Amplitude complexe associée à une grandeur sinusoïdale) On appelle amplitude complexe du signal $X(t) = X_m \cos(\omega t + \varphi)$ le nombre complexe : $\underline{X} = X_m e^{j(\omega t + \varphi)}$.

Remarque 2 : On a donc : $X(t) = \text{Re}(\underline{X})$.

II.2 Impédance complexe

On considère un dipôle passif aux bornes duquel on applique la tension sinusoïdale $v(t) = V_m \cos{(\omega t)}$, et soit $i(t) = I_m \cos(\omega t + \varphi)$ le courant sinusoïdal traversant ce dipôle en régime permanent. Associons à v(t) et i(t) respectivement les complexes $\underline{v} = V_m \mathrm{e}^{j\omega t}$ et $\underline{i} = I_m \mathrm{e}^{j(\omega t + \varphi)}$.

DÉFINITION 6 : On appelle impédance complexe le nombre $\underline{Z} = \frac{\underline{v}}{\underline{i}}$.

II.2.1 Cas d'une résistance

Théorème 4 : L'impédance associée à une résistance R est donnée par : $\underline{Z} = R$.

En effet :

II.2.2 Cas d'une bobine

On rappelle que : $v(t) = L \frac{\mathrm{d}i}{\mathrm{d}t}$.

Théorème 5: L'impédance associée à une bobine d'inductance L est donnée par : $\underline{Z} = jL\omega$.

II.2.3 Cas d'un condensateur

On rappelle que : $i(t) = C \frac{\,\mathrm{d} v}{\,\mathrm{d} t}$.

Théorème 6 : L'impédance associée à un condensateur de capacité
$$C$$
 est donnée par : $\underline{Z} = \frac{1}{jC\omega}$.

Les applications de cette partie seront développées en cours d'Electronique.

Et de terminer ce chapitre en citant Gérard Couturier, ancien Professeur d'Electronique du Département GEII de Bordeaux :

"La réalité est parfois compliquée mais jamais complexe".

Chapitre 6

FONCTIONS RECIPROQUES

I Généralités

DÉFINITION 1 : Soit f une fonction bijective de I dans J.

On définit sa fonction réciproque f^{-1} par f^{-1} : $\begin{cases} J \to I \\ x \mapsto f^{-1}(x) = y \end{cases}$ tel que f(y) = x.

On a :
$$\left\{ \begin{array}{ll} y = f^{-1}(x) \\ x \in J \end{array} \right. \quad \Leftrightarrow \quad \left\{ \begin{array}{ll} x = f(y) \\ y \in I \end{array} \right. .$$

Remarque 1:

$$\forall x \in I$$
, on a: $(f^{-1} \circ f)(x) = x$ et $\forall y \in J$, on a: $(f \circ f^{-1})(y) = y$.

Remarque 2:

Si f est une fonction définie, continue et strictement monotone sur un intervalle I alors f(I) = J est un intervalle et f réalise une bijection de I dans J. Elle admet donc une fonction réciproque f^{-1} .

Exercice 6.1 Montrer que la fonction $f: x \mapsto x^2$ définie sur \mathbb{R}^+ admet une fonction réciproque que l'on précisera.

 ${\bf Th\'{e}or\`{e}me}\ {\bf 1}: ({\bf Repr\'{e}sentation}\ {\bf graphique}\ {\bf d'une}\ {\bf fonction}\ {\bf r\'{e}ciproque})$

La représentation graphique de la fonction réciproque d'une fonction f, dans un repère orthonormé, s'obtient par symétrie par rapport à la droite d'équation y = x, à partir de celle de f.

Explications:

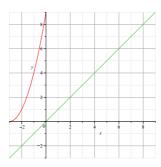


FIGURE 6.1 – Illustration graphique

Théorème 2 : (Dérivée de la fonction réciproque)

Soit f est une fonction définie, continue et strictement monotone sur I.

Son application réciproque est définie, continue et de **même sens de variation** que f sur J = f(I). Si, de plus, f est dérivable sur I alors f^{-1} est dérivable sur J (sauf en quelques valeurs éventuellement) et on a

$$(f^{-1})' = \frac{1}{f' \circ f^{-1}}$$

Remarque 3 :

- Si f^{-1} est dérivable en x_0 alors $(f^{-1})'(x_0) = \frac{1}{f'(f^{-1}(x_0))}$.
- Quelques explications sur la formule de la dérivée : On rappelle que : $(u \circ v)'(x) = v'(x).u'(v(x))$ et $(f \circ f^{-1})(x) = x$. En dérivant la seconde relation, il vient :

Exercice 6.2 Déterminer la dérivée de la fonction réciproque de $f: x \mapsto x^2$ définie sur \mathbb{R}^+ en précisant le domaine de dérivabilité.

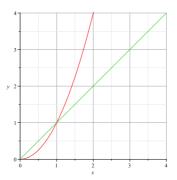


FIGURE 6.2 – Représentation graphique des fonctions "Carré" et "Racine carrée"

II Fonctions réciproques des fonctions trigonométriques

II.1 Fonction réciproque de la fonction tan : arctan

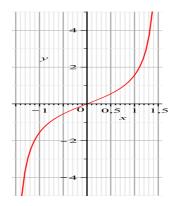


FIGURE 6.3 – Représentation graphique de tan sur $\left[\frac{-\pi}{2}; \frac{\pi}{2}\right]$

La restriction de la fonction $x\mapsto \tan x$ à l'intervalle $\left]\frac{-\pi}{2};\frac{\pi}{2}\right[$ est une bijection continue de cet intervalle sur \mathbb{R} . Notons que sa dérivée $(x\mapsto 1+\tan^2 x)$ ne s'annule pas sur \mathbb{R} . Cette fonction admet donc une fonction réciproque définie et dérivable sur \mathbb{R} .

Théorème-Définition 4 : (Fonction arctan)

La restriction de la fonction $x \mapsto \tan x$ à l'intervalle $\left] \frac{-\pi}{2} \right]$; $\frac{\pi}{2}$ admet une fonction réciproque, notée arctan, définie sur \mathbb{R} .

Remarque 4 : On a : $\arctan : \mathbb{R} \to \left] \frac{-\pi}{2}; \frac{\pi}{2} \right[$.

Le nombre $y = \arctan(x)$ est défini par les deux conditions $\begin{cases} \tan y = x \\ \frac{-\pi}{2} < y < \frac{\pi}{2} \end{cases}.$

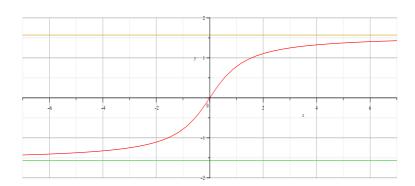


FIGURE 6.4 – Représentation graphique de arctan sur $\mathbb R$

Théorème 3 : (Dérivabilité de arctan)

La fonction $x \mapsto \arctan x$ est dérivable sur \mathbb{R} .

Pour tout x appartenant à \mathbb{R} , on a : $\arctan'(x) = \frac{1}{1+x^2}$.

Explication de l'expression de la dérivée :

Exercice 6.3 Déterminer la dérivée de la fonction $x \mapsto \arctan(e^{2x})$.

Exercice 6.4 On considère la fonction f définie par $f(t) = a\cos(\omega t) + b\sin(\omega t)$ avec a > 0 et b > 0. Montrer que : $f(t) = A\sin(\omega t + \varphi)$ avec $\varphi = \arctan\left(\frac{a}{b}\right)$ et A > 0.

II.2 Fonction réciproque de la fonction cos : arccos

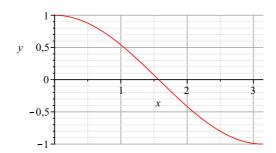


FIGURE 6.5 – Représentation graphique de cos sur $[0; \pi]$

La restriction de la fonction $x \mapsto \cos x$ à l'intervalle $[0; \pi]$ est une bijection continue de cet intervalle sur [-1; 1]. Notons que sa dérivée $(x \mapsto -\sin x)$ ne s'annule qu'en 0 et π , d'images respectives -1 et 1. Cette fonction admet donc une fonction réciproque, dérivable partout sauf en -1 et 1.

Théorème-Définition 5 : (Fonction arccos)

La restriction de la fonction $x \mapsto \cos x$ à l'intervalle $[0; \pi]$ admet une fonction réciproque, notée arccos, définie sur [-1; 1].

Remarque 5 : On a : $arccos : [-1; 1] \rightarrow [0; \pi]$.

Le nombre $y = \arccos(x)$ est défini par les deux conditions $\begin{cases} \cos y = x \\ 0 \le y \le \pi \end{cases}$.

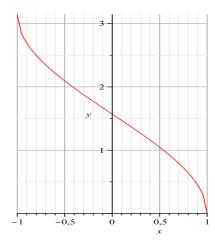


FIGURE 6.6 – Représentation graphique de arccos sur [-1;1]

Théorème 4 : (Dérivabilité de arccos)

La fonction $x \mapsto \arccos x$ est continue sur [-1;1] et dérivable sur]-1;1[.

Pour tout x appartenant à]-1;1[, on a : $\arccos'(x) = -\frac{1}{\sqrt{1-x^2}}$

II.3 Fonction réciproque de la fonction sin : arcsin

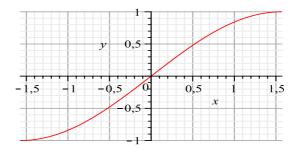


FIGURE 6.7 – Représentation graphique de sin sur $\left[\frac{-\pi}{2}; \frac{\pi}{2}\right]$

La restriction de la fonction $x \mapsto \sin x$ à l'intervalle $\left[\frac{-\pi}{2}; \frac{\pi}{2}\right]$ est une bijection continue de cet intervalle sur [-1;1]. Notons que sa dérivée $(x \mapsto \cos x)$ ne s'annule qu'en $\frac{-\pi}{2}$ et $\frac{\pi}{2}$, d'images respectives -1 et 1. Cette fonction admet donc une fonction réciproque, dérivable partout sauf en -1 et 1.

Théorème-Définition 6 : (Fonction arcsin)

La restriction de la fonction $x \mapsto \sin x$ à l'intervalle $\left[\frac{-\pi}{2}; \frac{\pi}{2}\right]$ admet une fonction réciproque, notée arcsin, définie sur [-1; 1].

REMARQUE 6 : On a : $\arcsin: [-1;1] \to \left[\frac{-\pi}{2}; \frac{\pi}{2}\right]$.

Le nombre $y=\arcsin{(x)}$ est défini par les deux conditions $\left\{\begin{array}{l} \sin{y}=x\\ \frac{-\pi}{2}\leq y\leq \frac{\pi}{2} \end{array}\right.$

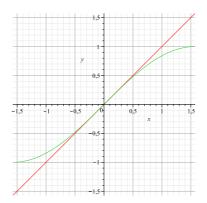


FIGURE 6.8 – Représentation graphique de arcsin à partir de la courbe de sin

Théorème 5 : (Dérivabilité de arcsin)

La fonction $x \mapsto \arcsin x$ est continue sur [-1;1] et dérivable sur]-1;1[. Pour tout x appartenant à]-1;1[, on a : $\arcsin'(x) = \frac{1}{\sqrt{1-x^2}}$.

Chapitre 7

DÉCOMPOSITION EN ÉLÉMENTS SIMPLES

I Généralités

DÉFINITION 1 : On appelle fraction rationnelle tout quotient $\frac{P}{Q}$ de deux polynômes P et Q. Une fraction rationnelle $\frac{P}{Q}$ est dite irréductible lorsque il n'existe pas de racine commune à P et Q. Les polynômes P et Q sont alors dits premiers entre eux.

Exercice 7.1 Ecrire $\frac{2X^2 - 4X - 6}{X^3 - 7X^2 + 7X + 15}$ sous forme d'une fraction rationnelle irréductible.

II Décomposition en éléments simples

Théorème-Définition 7: Soit $F = \frac{P}{Q}$ une fraction rationnelle irréductible. La division euclidienne de P par Q nous permet d'écrire : $\frac{P}{Q} = E + \frac{R}{Q}$ avec $\deg(R) < \deg(Q)$. Le polynôme E s'appelle la partie entière de la fraction rationnelle $\frac{P}{Q}$.

Remarque 1 : La partie entière de $F = \frac{P}{Q}$ s'obtient en effectuant la division de P par Q.

Exercice 7.2 Exercice sous la forme $E + \frac{R}{Q}$ la fraction rationnelle suivante : $F = \frac{X^2 + 7X + 13}{X + 5}$.

Nous admettrons que le polynôme Q peut s'écrire de manière unique comme le produit de polynômes irréductibles (polynômes du premier degré voire du second degré dont le discriminant est négatif si on travaille dans \mathbb{R}).

Ainsi : $Q = \prod_{i=1}^r Q_i^{\alpha_i}$, $\alpha_i \ge 1$, les Q_i étant deux à deux premiers entre eux et irréductibles.

Exercice 7.3 Déterminer les polynômes Q_i et les entiers associés α_i pour $Q = X^3 + 2X^2 + X$.

DÉFINITION 2: Les racines du polynôme Q sont appelés pôles de la fraction rationnelle.

Théorème 1 : (admis)

La fraction rationnelle $F = \frac{P}{Q}$ s'écrit de manière unique sous la forme :

$$F = E + \sum_{i=1}^{r} \sum_{j=1}^{\alpha_i} \frac{P_{ij}}{(Q_i)^j}$$

où, pour tout $i \in \{1; 2; \dots; r\}$ et tout $j \in \{1; 2; \dots; \alpha_i\}$, $\deg(P_{ij}) < \deg(Q_i)$.

Remarque 2 : Comme $\deg(P_{ij}) < \deg(Q_i)$, deux cas peuvent se présenter :

- si Q_i est un polynôme du premier degré alors P_{ij} est une constante (de la forme λ).
- si Q_i est un polynôme du second degré avec $\Delta < 0$ alors P_{ij} est de la forme $\lambda x + \mu$.

Propriété 30 : (Décompositon d'une fraction rationnelle avec des coefficients réels) Si le corps de base est \mathbb{R} , on décomposera le quotient $\frac{R}{O}$ sous la forme d'une somme :

- d'éléments simples de première espèce du type $\frac{\lambda}{(x-\alpha)^j}$ avec λ réel et j entier naturel non nul.
- nui.
 d'éléments simples de deuxième espèce du type $\frac{\lambda x + \mu}{(ax^2 + bx + c)^j}$ avec λ et μ réels , j entier naturel non nul $(b^2 4ac < 0)$.

Exercice 7.4 Décomposer, en éléments simples, la fraction rationnelle : $F(X) = \frac{X+2}{X^2-9}$

Exercice 7.5 Décomposer, en éléments simples, la fraction rationnelle : $G(X) = \frac{1}{X^4 - 1}$.

Exercice 7.6 Décomposer, en éléments simples, la fraction rationnelle : $H(X) = \frac{2X^3 + 1}{X^3 + X^2}$.

Chapitre 8

CALCUL INTÉGRAL

Primitives (Rappels)

DÉFINITION 1 : Soit f une fonction définie et dérivable sur I. F est une primitive de f sur un intervalle I si F' = f sur I.

REMARQUE 1: La fonction arctan est une primitive de $t \mapsto \frac{1}{1+t^2}$ sur \mathbb{R} .

Propriété 31 : Si fadmet une primitive F sur I alors elle admet une infinité de primitives G sur I et les primitives de f seront de la forme G = F + k où k est une constante réelle.

Remarque 2 : Notion d'intégrale indéfinie (sans bornes)

Soit f une fonction définie sur un intervalle I admettant des primitives.

On note $\int f(x) dx$ l'ensemble de toutes les primitives de f sur cet intervalle.

Ainsi, si F est une primitive de f sur I alors : $\int f(x) dx = \{x \mapsto F(x) + k \text{ où } k \in \mathbb{R}\}.$

Par abus de langage, cette notation désigne aussi une primitive quelconque de f.

On note parfois : $\int f(t)dt = F + k$ (cf. Chapitre 1).

Théorème 1: Toute fonction continue sur un intervalle I admet une primitive sur I.

Remarque 3:

• Certaines fonctions non continues admettent des primitives comme cela a été vu en début d'année avec la définition de l'intégrale de Riemann.

C'est le cas, par exemple, des fonctions en escalier, des fonctions continues par morceaux ainsi que des fonctions bornées ayant un nombre fini (éventuellement nul) de points de discontinuité.

De ce fait, la fonction f définie par : $f(x) = \begin{cases} 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$ admet des primitives. Cette fonction n'est pas continue en 0 cependant elle admet pour primitive la fonction F définie par : $F(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$

$$F(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right)^2 & \text{si } x \neq 0\\ 0 & \text{si } x = 0 \end{cases}.$$

• Certaines fonctions usuelles comme $t\mapsto \mathrm{e}^{-t^2}$, $t\mapsto \frac{\sin(t)}{t}$, $t\mapsto \frac{\mathrm{e}^{-t}}{t}$ sont continues sur $\mathbb R$ ou $\mathbb R^*$ et admettent donc des primitives mais on ne sait pas exprimer celles-ci à l'aide de fonctions usuelles.

Dans un tel cas, il est intéressant de déterminer des valeurs approchées d'intégrales à l'aide de méthodes comme celles des rectangles, trapèzes vues en TP de Mathématiques.

En outre, certains calculs exacts demeurent possibles mais font appel, par exemple, à des intégrales doubles (cf. fonctions de plusieurs variables). Voici des résultats obtenus à l'aide de Maple :

$$\int_0^2 e^{-x^2} dx \quad \to \quad \frac{1}{2} \operatorname{erf}(2) \sqrt{\pi} \quad \text{où} \quad \operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt.$$

Maple ne donne pas de résultat explicite mais fait référence à une fonction (erf) définie par intégrale ...

II Intégrales

II.1 Généralités

On rappelle que, F étant une primitive de f sur un intervalle [a;b], on a : $\int_a^b f(t)dt = [F(t)]_a^b = F(b) - F(a).$

Remarque 4 : $\int\limits_a^a f(t) \; \mathrm{d}t = 0 \; \mathrm{et} \; \int\limits_a^b f(t) \; \mathrm{d}t = - \int\limits_b^a f(t) \; \mathrm{d}t.$

Propriétés de l'intégrale)

Soient f et g deux fonctions continues sur I, a,b,c trois réels de I et α et β deux réels quelconques.

- Linéarité de l'intégrale : $\int\limits_a^b (\alpha\,f+\beta\,g)(t)\mathrm{d}t = \alpha\,\int\limits_a^b f(t)\mathrm{d}t + \beta\,\int\limits_a^b g(t)\mathrm{d}t.$
- Relation de Chasles : $\int_{a}^{b} f(t)dt = \int_{a}^{c} f(t)dt + \int_{c}^{b} f(t)dt.$

REMARQUE 5 : Si f est définie sur les intervalles $]a_0; a_1[,]a_1; a_2[, \cdots,]a_{n-1}; a_n[$ avec $a_0 = a$ et $a_n = b$ alors : $\int_{i=0}^{b} f(t) dt = \sum_{i=0}^{n-1} \int_{i=0}^{a_{i+1}} f(t) dt.$

Exercice 8.1 Soit f la fonction définie par $f(x) = \begin{cases} 1 & si & -2 < x \le 0 \\ -x+1 & si & 0 < x < 3 \\ x^2 & si & 3 \le x \le 4 \end{cases}$. Calculer $\int_{-2}^4 f(x) dx$.

Théorème 2 : (Positivité de l'intégrale)

Soit f une fonction continue et positive sur un intervalle [a;b]. On a : $\int_a^b f(t)dt \ge 0$.

Démonstration :

COROLLAIRE 7 : (Intégration d'une inégalité)

Soient f et g deux fonctions continues sur un intervalle [a;b].

Si, pour tout $t \in [a; b]$, on $a : f(t) \le g(t)$ alors $\int_a^b f(t) dt \le \int_a^b g(t) dt$.

Démonstration:

Théorème 3 : (Intégrale et moyenne)

Soit f une fonction continue sur un intervalle [a;b] telle que, pour tout $x \in [a;b]$, on $a:m \leq f(x) \leq M$.

On a:
$$m(b-a) \le \int_{a}^{b} f(t) dt \le M(b-a)$$
.

II.2 Utilisation de l'intégrale en GEII : Valeurs moyenne et efficace

Définition 2 :

On appelle valeur moyenne d'une fonction f sur [a,b] le nombre, noté $\langle f \rangle$, défini par

$$\langle f \rangle = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

En particulier, la valeur moyenne d'une fonction T-périodique f est définie par

$$\langle f \rangle = \frac{1}{T} \int_{0}^{T} f(x) \, \mathrm{d}x$$

Exercice 8.2 Déterminer la valeur moyenne du signal v défini par

$$v(t) = V_m \sin(\omega t)$$

DÉFINITION 3 : La valeur efficace d'une fonction T-périodique f, notée f_{eff} , est définie par

$$f_{eff}^{2} = \langle f^2 \rangle$$

$$f_{eff}^2 = \frac{1}{T} \int_0^T f^2(x) \, \mathrm{d}x.$$

Le carré de la valeur efficace correspond à la moyenne quadratique. On a donc

$$f_{eff} = \sqrt{\langle f^2 \rangle}$$

Exercice 8.3 Déterminer la valeur efficace du signal v défini par

$$v(t) = V_m \sin(\omega t)$$

III Calculs d'intégrales

III.1 Intégration par parties

Théorème 4: Soient u et v deux fonctions dérivables sur [a;b] à dérivées continues sur [a;b].

$$\int_a^b u'(t)v(t) dt = [u(t)v(t)]_a^b - \int_a^b u(t)v'(t) dt$$

Démonstration :

Méthode ALPES : On dérive (passage de v à v') la première fonction trouvée (en lisant de gauche à droite) ...

A	L	P	E	S

Exercice 8.4 Calculer $\int_{0}^{\frac{\pi}{2}} x \sin x \ dx$.

III.2 Changement de variable

Théorème 5 :

Soient α et β deux réels, φ étant une fonction continûment dérivable strictement monotone sur $[\alpha; \beta]$ et f une fonction continue sur [a; b] avec $\varphi(\alpha) = a$ et $\varphi(\beta) = b$. On a :

$$\int_{a}^{b} f(x) dx = \int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) dt.$$

Démonstration :

Exercice 8.5 Calculer
$$\int_{0}^{1} \sqrt{1-x^2} dx$$
 à l'aide du changement de variable $x = \sin t$.

Exercice 8.6 Calculer $K = \int_{1}^{C} \frac{dt}{t\sqrt{\ln t + 1}}$ à l'aide du changement de variable $u = \ln t$.

Théorème 6:

Soit
$$f$$
 une fonction continue sur \mathbb{R} , T -périodique.
Pour tout réel a , on a :
$$\int_{a}^{a+T} f(t) dt = \int_{0}^{T} f(t) dt.$$

Démonstration :

COROLLAIRE 8 : Soit f une fonction continue sur \mathbb{R} , T-périodique.

$$\int_{0}^{T} f(t) dt = \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) dt.$$

III.3 Calcul de primitives

Voici quelques exemples de recherches avec d'éventuels changements de variable.

III.3.1 Recherche des primitives de $x \mapsto \frac{1}{(x^2+1)^n}$

- Cas où $n=1:\int \frac{\mathrm{d}x}{x^2+1}=\arctan x+K$; Cas où n>1: Utilisation d'un changement de variables
- On peut utiliser le changement de variable $t = \arctan x$. Il en résulte que : $\int \frac{\mathrm{d}x}{(x^2+1)^n} = \int \cos^{2(n-1)}(t) \mathrm{d}t.$

Exercice 8.7 Calculer $J = \int_{0}^{1} \frac{1}{(x^2 + 1)^2} dx$.

III.3.2 Cas de certaines fonctions trigonométriques (voir TD)

On veut calculer $\int_{a}^{b} \cos^{p}(t) \sin^{q}(t) dt$.

La méthode dépend de la **parité** des entiers p et q.

• Cas où l'un est pair et l'autre est impair : Méthode : On transforme celui qui porte l'exposant impair de la façon suivante : $\cos^{2n+1} x = (\cos^2 x)^n \cos x$ et on utilise $\cos^2 x = 1 - \sin^2 x$.

Exercice 8.8 Déterminer $\int \cos^3(x) \sin^4(x) dx$.

- Cas où les deux exposants sont impairs : Méthode : On transforme celui qui associé à l'exposant impair le plus petit en utilisant la même méthode que précédemment.
- <u>Cas où les deux exposants sont pairs :</u> Méthode : On utilise suivant les cas les formules de trigonométrie classiques ou les formules d'Euler pour linéariser.

Exercice 8.9 Déterminer $\int \cos^2(x) \sin^2(x) dx$.

Remarque 6 : On doit également linéariser lors qu'on doit calculer des intégrales du type $\int\limits_0^{\frac{\pi}{4}} \cos{(x)} \cos{(3x)} \; \mathrm{d}x.$